import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import time # Load the Vicuna 7B v1.3 LMSys model and tokenizer model_name = "lmsys/vicuna-7b-v1.3" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ## Task 1 # msg = template_all.format(text) template_all = '''Output the in the following sentence without additional text in json format: "{}"''' # msg = template_single.format(ents_prompt[eid], text) template_single = '''Output any <{}> in the following sentence one per line without additional text: "{}"''' ## Task 2 prompt2_pos = '''POS tag the following sentence using Universal POS tag set without generating additional text: {}''' prompt2_chunk = '''Do sentence chunking for the following sentence as in CoNLL 2000 shared task without generating addtional text: {}''' ## Task 3 with gr.Blocks() as demo: gr.Markdown("# LLM Evaluator With Linguistic Scrutiny") with gr.Tab("POS"): gr.Markdown(" Description ") prompt_POS = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter") gr.Markdown("Strategy 1 QA-Based Prompting") with gr.Row(): vicuna_S1_chatbot_POS = gr.Chatbot(label="vicuna-7b") llama_S1_chatbot_POS = gr.Chatbot(label="llama-7b") gpt_S1_chatbot_POS = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton([prompt_POS, vicuna_S1_chatbot_POS]) gr.Markdown("Strategy 2 Instruction-Based Prompting") with gr.Row(): vicuna_S2_chatbot_POS = gr.Chatbot(label="vicuna-7b") llama_S2_chatbot_POS = gr.Chatbot(label="llama-7b") gpt_S2_chatbot_POS = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton([prompt_POS, vicuna_S2_chatbot_POS]) gr.Markdown("Strategy 3 Structured Prompting") with gr.Row(): vicuna_S3_chatbot_POS = gr.Chatbot(label="vicuna-7b") llama_S3_chatbot_POS = gr.Chatbot(label="llama-7b") gpt_S3_chatbot_POS = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton([prompt_POS, vicuna_S3_chatbot_POS]) with gr.Tab("Chunk"): gr.Markdown(" Description ") prompt_CHUNK = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter") gr.Markdown("Strategy 1 QA") with gr.Row(): vicuna_S1_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b") llama_S1_chatbot_CHUNK = gr.Chatbot(label="llama-7b") gpt_S1_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton([prompt_CHUNK, vicuna_S1_chatbot_CHUNK]) gr.Markdown("Strategy 2 Instruction") with gr.Row(): vicuna_S2_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b") llama_S2_chatbot_CHUNK = gr.Chatbot(label="llama-7b") gpt_S2_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton([prompt_CHUNK, vicuna_S2_chatbot_CHUNK]) gr.Markdown("Strategy 3 Structured Prompting") with gr.Row(): vicuna_S3_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b") llama_S3_chatbot_CHUNK = gr.Chatbot(label="llama-7b") gpt_S3_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton([prompt_CHUNK, vicuna_S3_chatbot_CHUNK]) def respond(message, chat_history): input_ids = tokenizer.encode(message, return_tensors="pt") output_ids = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2) bot_message = tokenizer.decode(output_ids[0], skip_special_tokens=True) chat_history.append((message, bot_message)) time.sleep(2) return "", chat_history prompt_POS.submit(respond, [template_all.format(prompt_POS), vicuna_S1_chatbot_POS], [template_all.format(prompt_POS), vicuna_S1_chatbot_POS]) prompt_POS.submit(respond, [prompt2_pos.format(prompt_POS), vicuna_S2_chatbot_POS], [prompt2_pos.format(prompt_POS), vicuna_S2_chatbot_POS]) prompt_POS.submit(respond, [prompt_POS, vicuna_S3_chatbot_POS], [prompt_POS, vicuna_S3_chatbot_POS]) prompt_CHUNK.submit(respond, [template_all.format(prompt_CHUNK), vicuna_S1_chatbot_CHUNK], [template_all.format(prompt_CHUNK), vicuna_S1_chatbot_CHUNK]) prompt_CHUNK.submit(respond, [prompt2_chunk.format(prompt_CHUNK), vicuna_S2_chatbot_CHUNK], [prompt2_chunk.format(prompt_CHUNK), vicuna_S2_chatbot_CHUNK]) prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S3_chatbot_CHUNK], [prompt_CHUNK, vicuna_S3_chatbot_CHUNK]) demo.launch()