import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load pre-trained GPT-3.5 model and tokenizer (you can replace this with your model) model_name = "EleutherAI/gpt-neo-2.7B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def generate_text(input_text, max_length=50): input_ids = tokenizer.encode(input_text, return_tensors="pt") output = model.generate(input_ids, max_length=max_length, num_return_sequences=1) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) return generated_text # Create a Gradio interface iface = gr.Interface( fn=generate_text, # Your text generation function inputs=gr.Textbox(text="Enter text here..."), # Text input field outputs=gr.Textbox(), # Display generated text live=True # Real-time updates ) # Launch the interface iface.launch()