import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import time import os import openai # Load the Vicuna 7B v1.3 LMSys model and tokenizer model_name = "lmsys/vicuna-7b-v1.3" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"''' #API Keys os.environ['OPENAI_API_TOKEN'] = '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' openai.api_key = os.environ['OPENAI_API_TOKEN'] def chat(system_prompt, user_prompt, model = 'gpt-3.5-turbo', temperature = 0, verbose = False): ''' Normal call of OpenAI API ''' response = openai.ChatCompletion.create( temperature = temperature, model=model, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ]) res = response['choices'][0]['message']['content'] if verbose: print('System prompt:', system_prompt) print('User prompt:', user_prompt) print('GPT response:', res) return res def format_chat_prompt(message, chat_history, max_convo_length): prompt = "" for turn in chat_history[-max_convo_length:]: user_message, bot_message = turn prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}" prompt = f"{prompt}\nUser: {message}\nAssistant:" return prompt def respond_gpt(tab_name, message, chat_history, max_convo_length = 10): formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length) print('Prompt + Context:') print(formatted_prompt) bot_message = chat(system_prompt = f'''Generate the output only for the assistant. Please output any <{tab_name}> in the following sentence one per line without any additional text.''', user_prompt = formatted_prompt) chat_history.append((message, bot_message)) return "", chat_history def respond(message, chat_history): input_ids = tokenizer.encode(message, return_tensors="pt") output_ids = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2) bot_message = tokenizer.decode(output_ids[0], skip_special_tokens=True) chat_history.append((message, bot_message)) time.sleep(2) return "", chat_history def interface(): gr.Markdown(" Description ") textbox_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter") api_key = gr.Textbox(label="Open AI Key", placeholder="Enter your Openai key here", type="password") btn = gr.Button("Submit") # prompt = template_single.format(tab_name, textbox_prompt) tab_name = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity") gr.Markdown("Strategy 1 QA-Based Prompting") with gr.Row(): vicuna_S1_chatbot = gr.Chatbot(label="vicuna-7b") llama_S1_chatbot = gr.Chatbot(label="llama-7b") gpt_S1_chatbot = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton(components=[textbox_prompt, vicuna_S1_chatbot]) gr.Markdown("Strategy 2 Instruction-Based Prompting") with gr.Row(): vicuna_S2_chatbot = gr.Chatbot(label="vicuna-7b") llama_S2_chatbot = gr.Chatbot(label="llama-7b") gpt_S2_chatbot = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton(components=[textbox_prompt, vicuna_S2_chatbot]) gr.Markdown("Strategy 3 Structured Prompting") with gr.Row(): vicuna_S3_chatbot = gr.Chatbot(label="vicuna-7b") llama_S3_chatbot = gr.Chatbot(label="llama-7b") gpt_S3_chatbot = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton(components=[textbox_prompt, vicuna_S3_chatbot]) textbox_prompt.submit(respond, inputs=[textbox_prompt, vicuna_S1_chatbot], outputs=[textbox_prompt, vicuna_S1_chatbot]) textbox_prompt.submit(respond, inputs=[textbox_prompt, vicuna_S2_chatbot], outputs=[textbox_prompt, vicuna_S2_chatbot]) textbox_prompt.submit(respond, inputs=[textbox_prompt, vicuna_S3_chatbot], outputs=[textbox_prompt, vicuna_S3_chatbot]) btn.click(respond_gpt, inputs=[tab_name, textbox_prompt, gpt_S1_chatbot], outputs=[tab_name, textbox_prompt, gpt_S1_chatbot]) with gr.Blocks() as demo: gr.Markdown("# LLM Evaluator With Linguistic Scrutiny") with gr.Tab("Noun"): interface() with gr.Tab("Determiner"): gr.Markdown(" Description ") prompt_CHUNK = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter") gr.Markdown("Strategy 1 QA") with gr.Row(): vicuna_S1_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b") llama_S1_chatbot_CHUNK = gr.Chatbot(label="llama-7b") gpt_S1_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton([prompt_CHUNK, vicuna_S1_chatbot_CHUNK]) gr.Markdown("Strategy 2 Instruction") with gr.Row(): vicuna_S2_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b") llama_S2_chatbot_CHUNK = gr.Chatbot(label="llama-7b") gpt_S2_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton([prompt_CHUNK, vicuna_S2_chatbot_CHUNK]) gr.Markdown("Strategy 3 Structured Prompting") with gr.Row(): vicuna_S3_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b") llama_S3_chatbot_CHUNK = gr.Chatbot(label="llama-7b") gpt_S3_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton([prompt_CHUNK, vicuna_S3_chatbot_CHUNK]) with gr.Tab("Noun phrase"): interface() with gr.Tab("Verb phrase"): interface() with gr.Tab("Dependent clause"): interface() with gr.Tab("T-units"): interface() prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S1_chatbot_CHUNK], [prompt_CHUNK, vicuna_S1_chatbot_CHUNK]) prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S2_chatbot_CHUNK], [prompt_CHUNK, vicuna_S2_chatbot_CHUNK]) prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S3_chatbot_CHUNK], [prompt_CHUNK, vicuna_S3_chatbot_CHUNK]) demo.launch()