import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import time import os import openai # Load the Vicuna 7B model and tokenizer vicuna_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3") vicuna_model = AutoModelForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3") # Load the LLaMA 7b model and tokenizer llama_tokenizer = AutoTokenizer.from_pretrained("luodian/llama-7b-hf") llama_model = AutoModelForCausalLM.from_pretrained("luodian/llama-7b-hf") template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"''' def update_api_key(new_key): global api_key os.environ['OPENAI_API_TOKEN'] = new_key openai.api_key = os.environ['OPENAI_API_TOKEN'] def chat(system_prompt, user_prompt, model = 'gpt-3.5-turbo', temperature = 0, verbose = False): ''' Normal call of OpenAI API ''' response = openai.ChatCompletion.create( temperature = temperature, model=model, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ]) res = response['choices'][0]['message']['content'] if verbose: print('System prompt:', system_prompt) print('User prompt:', user_prompt) print('GPT response:', res) return res def format_chat_prompt(message, chat_history, max_convo_length): prompt = "" for turn in chat_history[-max_convo_length:]: user_message, bot_message = turn prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}" prompt = f"{prompt}\nUser: {message}\nAssistant:" return prompt def gpt_respond(tab_name, message, chat_history, max_convo_length = 10): formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length) print('Prompt + Context:') print(formatted_prompt) bot_message = chat(system_prompt = f'''Generate the output only for the assistant. Please output any <{tab_name}> in the following sentence one per line without any additional text.''', user_prompt = formatted_prompt) chat_history.append((message, bot_message)) return "", chat_history def vicuna_respond(message, chat_history): input_ids = vicuna_tokenizer.encode(message, return_tensors="pt") output_ids = vicuna_model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2) bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True) chat_history.append((message, bot_message)) time.sleep(2) return "", chat_history def llama_respond(message, chat_history): input_ids = llama_tokenizer.encode(message, return_tensors="pt") output_ids = llama_model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2) bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True) chat_history.append((message, bot_message)) time.sleep(2) return "", chat_history def vicuna_respond(message, chat_history): input_ids = vicuna_tokenizer.encode(message, return_tensors="pt") output_ids = vicuna_model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2) bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True) chat_history.append((message, bot_message)) time.sleep(2) return "", chat_history def interface(): gr.Markdown(" Description ") textbox_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter") with gr.Row(): api_key_input = gr.Textbox(label="Open AI Key", placeholder="Enter your Openai key here", type="password") api_key_btn = gr.Button(label="Submit Api Key", scale=0) tab_name = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity") btn = gr.Button(label="Submit") # prompt = template_single.format(tab_name, textbox_prompt) gr.Markdown("Strategy 1 QA-Based Prompting") with gr.Row(): vicuna_S1_chatbot = gr.Chatbot(label="vicuna-7b") llama_S1_chatbot = gr.Chatbot(label="llama-7b") gpt_S1_chatbot = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton(components=[textbox_prompt, api_key_input, vicuna_S1_chatbot, llama_S1_chatbot, gpt_S1_chatbot]) # gr.Markdown("Strategy 2 Instruction-Based Prompting") # with gr.Row(): # vicuna_S2_chatbot = gr.Chatbot(label="vicuna-7b") # llama_S2_chatbot = gr.Chatbot(label="llama-7b") # gpt_S2_chatbot = gr.Chatbot(label="gpt-3.5") # clear = gr.ClearButton(components=[textbox_prompt, vicuna_S2_chatbot]) # gr.Markdown("Strategy 3 Structured Prompting") # with gr.Row(): # vicuna_S3_chatbot = gr.Chatbot(label="vicuna-7b") # llama_S3_chatbot = gr.Chatbot(label="llama-7b") # gpt_S3_chatbot = gr.Chatbot(label="gpt-3.5") # clear = gr.ClearButton(components=[textbox_prompt, vicuna_S3_chatbot]) textbox_prompt.submit(vicuna_respond, inputs=[textbox_prompt, vicuna_S1_chatbot], outputs=[textbox_prompt, vicuna_S1_chatbot]) # textbox_prompt.submit(respond, inputs=[textbox_prompt, vicuna_S2_chatbot], outputs=[textbox_prompt, vicuna_S2_chatbot]) # textbox_prompt.submit(respond, inputs=[textbox_prompt, vicuna_S3_chatbot], outputs=[textbox_prompt, vicuna_S3_chatbot]) textbox_prompt.submit(llama_respond, inputs=[textbox_prompt, llama_S1_chatbot], outputs=[textbox_prompt, llama_S1_chatbot]) api_key_btn.click(update_api_key, inputs=api_key_input) btn.click(gpt_respond, inputs=[tab_name, textbox_prompt, gpt_S1_chatbot], outputs=[tab_name, textbox_prompt, gpt_S1_chatbot]) with gr.Blocks() as demo: gr.Markdown("# LLM Evaluator With Linguistic Scrutiny") interface() demo.launch()