aivid / app.py
reshane's picture
requirements.txt
f0403f0
raw
history blame
644 Bytes
__all__ = ["label_func", "learn", "classify_image", "categories", "image", "label", "examples", "demo"]
from fastai.vision.all import *
import gradio as gr
def label_func(f): return f[0] == 'p'
def acc_camvid(*_): pass
def get_y(*_): pass
learner = load_learner('my_export.pkl')
categories = ('Poison Ivy', 'Not Poison Ivy')
def classify_image(img):
pred,idx,probs = learn.predict(img)
return dict(zip(categories, map(float,probs)))
image = gr.Image(shape=(192, 192))
label = gr.Label()
examples = ["pepe.jpg"]
demo = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
demo.launch(inline=False)