from fastai.vision.all import * import gradio as gr def label_func(f): return f[0] == 'p' def acc_camvid(*_): pass def get_y(*_): pass learner = load_learner('my_export.pkl') categories = ('Poison Ivy', 'Not Poison Ivy') def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float,probs)) image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ["pepe.jpg"] demo = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) demo.launch(inline=False)