|
import streamlit |
|
import langchain |
|
from langchain.llms import GenerativeModel |
|
|
|
|
|
API_KEY = "AIzaSyBI2C5bFa0JsvCCyabbyANg8LUjcpqUiVM" |
|
|
|
|
|
llm = GenerativeModel("google-llm/text-davinci-003", api_key=API_KEY) |
|
|
|
def generate_response(user_input): |
|
""" |
|
Sends user input to Gemini and returns its response. |
|
|
|
Args: |
|
user_input: The user's message. |
|
|
|
Returns: |
|
The generated response from Gemini. |
|
""" |
|
prompt ={user_input} |
|
response = llm.generate_content(prompt=prompt) |
|
return response.content[0]["text"] |
|
|
|
while True: |
|
user_input = input("enter your text") |
|
if user_input.lower() == "quit": |
|
break |
|
response = generate_response(user_input) |
|
st.write( {response}) |