Spaces:
Sleeping
Sleeping
import torch | |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler | |
from diffusers.utils import export_to_video | |
import streamlit as st | |
from diffusers import UNet2DConditionModel, TextEncoder, VQModel | |
# Use the default model names here | |
unet_model_name = "unet/diffusion_pytorch_model.bin" | |
text_encoder_name = "text_encoder/pytorch_model.bin" | |
vae_model_name = "vae/diffusion_pytorch_model.bin" | |
# Create the pipeline or model objects using the default names | |
pipeline = UNet2DConditionModel.from_pretrained(unet_model_name) | |
# Title and User Input | |
st.title("Text-to-Video with Streamlit") | |
prompt = st.text_input("Enter your text prompt:", "Spiderman is surfing") | |
# Button to trigger generation | |
if st.button("Generate Video"): | |
# Ensure you have 'accelerate' version 0.17.0 or higher (see previous explanation) | |
import accelerate | |
if accelerate.__version__ < "0.17.0": | |
st.warning("Please upgrade 'accelerate' to version 0.17.0 or higher for CPU offloading.") | |
else: | |
with st.spinner("Generating video..."): | |
pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", | |
torch_dtype=torch.float16, | |
variant="fp16", | |
device="cpu") # Force CPU usage | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_model_cpu_offload() # Assuming 'accelerate' is updated | |
video_frames = pipe(prompt, num_inference_steps=25).frames | |
video_path = export_to_video(video_frames) | |
# Display the video in the Streamlit app | |
st.video(video_path) |