reshmasuresh commited on
Commit
8f095bf
·
1 Parent(s): c152fa0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -29,7 +29,7 @@ def tumor_detection(img, model):
29
  return "Tumor Detected" if res else "No Tumor"
30
 
31
  # Streamlit App
32
- st.title("Deep Prediction Models")
33
 
34
  # Choose between tasks
35
  task = st.radio("Select Task", ("Sentiment Classification", "Tumor Detection"))
@@ -54,9 +54,9 @@ if task == "Sentiment Classification":
54
  elif model_option == "DNN":
55
  model = load_model('DNN_model.keras')
56
  elif model_option == "RNN":
57
- model = load_model('RNN_imdb.keras')
58
  elif model_option == "LSTM":
59
- model = load_model('lstm_imdb.keras')
60
 
61
  if st.button("Classify Sentiment"):
62
  result = sentiment_classification(new_review_text, model)
@@ -69,7 +69,7 @@ elif task == "Tumor Detection":
69
 
70
  if uploaded_file is not None:
71
  # Load the tumor detection model
72
- model = load_model('CN.h5')
73
  st.image(uploaded_file, caption="Uploaded Image.", use_column_width=False, width=200)
74
  st.write("")
75
 
 
29
  return "Tumor Detected" if res else "No Tumor"
30
 
31
  # Streamlit App
32
+ st.title("Multimodel Prediction")
33
 
34
  # Choose between tasks
35
  task = st.radio("Select Task", ("Sentiment Classification", "Tumor Detection"))
 
54
  elif model_option == "DNN":
55
  model = load_model('DNN_model.keras')
56
  elif model_option == "RNN":
57
+ model = load_model('RN.keras')
58
  elif model_option == "LSTM":
59
+ model = load_model('imdb_model.h5')
60
 
61
  if st.button("Classify Sentiment"):
62
  result = sentiment_classification(new_review_text, model)
 
69
 
70
  if uploaded_file is not None:
71
  # Load the tumor detection model
72
+ model = load_model('tumor_model.h5')
73
  st.image(uploaded_file, caption="Uploaded Image.", use_column_width=False, width=200)
74
  st.write("")
75