Spaces:
Sleeping
Sleeping
Delete customize
Browse files- customize/customize_embeddings.py +0 -49
- customize/customize_helper.py +0 -129
customize/customize_embeddings.py
DELETED
@@ -1,49 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# Copyright 2021, IBM Corporation.
|
5 |
-
#
|
6 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
-
# you may not use this file except in compliance with the License.
|
8 |
-
# You may obtain a copy of the License at
|
9 |
-
#
|
10 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
-
#
|
12 |
-
# Unless required by applicable law or agreed to in writing, software
|
13 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
-
# See the License for the specific language governing permissions and
|
16 |
-
# limitations under the License.
|
17 |
-
|
18 |
-
"""
|
19 |
-
Python function to customize json sentences locally.
|
20 |
-
"""
|
21 |
-
|
22 |
-
__author__ = "Vagner Santana, Melina Alberio, Cassia Sanctos and Tiago Machado"
|
23 |
-
__copyright__ = "IBM Corporation 2024"
|
24 |
-
__credits__ = ["Vagner Santana, Melina Alberio, Cassia Sanctos, Tiago Machado"]
|
25 |
-
__license__ = "Apache 2.0"
|
26 |
-
__version__ = "0.0.1"
|
27 |
-
|
28 |
-
import os
|
29 |
-
import json
|
30 |
-
import pandas as pd
|
31 |
-
import numpy as np
|
32 |
-
import customize_helper
|
33 |
-
|
34 |
-
# Sentence transformer model HF
|
35 |
-
model_path = 'models/all-MiniLM-L6-v2'
|
36 |
-
model_id = model_path.split("/")[1]
|
37 |
-
|
38 |
-
# INPUT FILE
|
39 |
-
# Default file with empty embeddings
|
40 |
-
json_in_file = 'prompt-sentences-main/prompt_sentences.json'
|
41 |
-
json_in_file_name = json_in_file.split(".json")[0]
|
42 |
-
|
43 |
-
# OUTPUT FILE
|
44 |
-
json_out_file_name = f'{json_in_file_name}-{model_id}.json'
|
45 |
-
|
46 |
-
prompt_json = json.load(open(json_in_file))
|
47 |
-
prompt_json_embeddings = customize_helper.populate_embeddings(prompt_json, model_path)
|
48 |
-
prompt_json_centroids = customize_helper.populate_centroids(prompt_json_embeddings)
|
49 |
-
customize_helper.save_json(prompt_json_centroids, json_out_file_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
customize/customize_helper.py
DELETED
@@ -1,129 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# Copyright 2021, IBM Corporation.
|
5 |
-
#
|
6 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
-
# you may not use this file except in compliance with the License.
|
8 |
-
# You may obtain a copy of the License at
|
9 |
-
#
|
10 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
-
#
|
12 |
-
# Unless required by applicable law or agreed to in writing, software
|
13 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
-
# See the License for the specific language governing permissions and
|
16 |
-
# limitations under the License.
|
17 |
-
|
18 |
-
"""
|
19 |
-
Python helper function to customize json sentences locally.
|
20 |
-
"""
|
21 |
-
|
22 |
-
__author__ = "Vagner Santana, Melina Alberio, Cassia Sanctos and Tiago Machado"
|
23 |
-
__copyright__ = "IBM Corporation 2024"
|
24 |
-
__credits__ = ["Vagner Santana, Melina Alberio, Cassia Sanctos, Tiago Machado"]
|
25 |
-
__license__ = "Apache 2.0"
|
26 |
-
__version__ = "0.0.1"
|
27 |
-
|
28 |
-
import os
|
29 |
-
import json
|
30 |
-
import pandas as pd
|
31 |
-
import numpy as np
|
32 |
-
import math
|
33 |
-
from sentence_transformers import SentenceTransformer
|
34 |
-
|
35 |
-
# Requests embeddings for a given sentence
|
36 |
-
def query_model(texts, model_path):
|
37 |
-
out = []
|
38 |
-
model = SentenceTransformer(model_path)
|
39 |
-
input_embedding = model.encode(texts)
|
40 |
-
out.append(input_embedding)
|
41 |
-
if( out != [] ):
|
42 |
-
return out[0]
|
43 |
-
else:
|
44 |
-
return out
|
45 |
-
|
46 |
-
# Returns euclidean distance between two embeddings
|
47 |
-
def get_distance(embedding1, embedding2):
|
48 |
-
total = 0
|
49 |
-
if( len(embedding1) != len(embedding2)):
|
50 |
-
return math.inf
|
51 |
-
|
52 |
-
for i, obj in enumerate(embedding1):
|
53 |
-
total += math.pow(embedding2[0][i] - embedding1[0][i], 2)
|
54 |
-
return(math.sqrt(total))
|
55 |
-
|
56 |
-
# Returns the centroid for a given value
|
57 |
-
def get_centroid(v, dimension = 384, k = 10):
|
58 |
-
centroid = [0] * dimension
|
59 |
-
count = 0
|
60 |
-
for p in v['prompts']:
|
61 |
-
i = 0
|
62 |
-
while i < len(p['embedding']):
|
63 |
-
centroid[i] += p['embedding'][i]
|
64 |
-
i += 1
|
65 |
-
count += 1
|
66 |
-
i = 0
|
67 |
-
while i < len(centroid):
|
68 |
-
centroid[i] /= count
|
69 |
-
i += 1
|
70 |
-
|
71 |
-
# Update centroid considering only the k-near elements
|
72 |
-
if(len(v['prompts']) <= k):
|
73 |
-
return centroid
|
74 |
-
else:
|
75 |
-
k_items = pd.DataFrame(columns=['embedding', 'distance'])
|
76 |
-
for p in v['prompts']:
|
77 |
-
dist = get_distance(pd.DataFrame(centroid), pd.DataFrame(p['embedding']))
|
78 |
-
k_items = pd.concat([pd.DataFrame([[p['embedding'], dist]], columns=k_items.columns), k_items], ignore_index=True)
|
79 |
-
|
80 |
-
k_items = k_items.sort_values(by='distance')
|
81 |
-
k_items = k_items.head(k)
|
82 |
-
|
83 |
-
# Computing centroid only for the k-near elements
|
84 |
-
centroid = [0] * dimension
|
85 |
-
for i, embedding in enumerate(k_items['embedding']):
|
86 |
-
for j, dimension in enumerate(embedding):
|
87 |
-
centroid[j] += embedding[j]
|
88 |
-
i = 0
|
89 |
-
while i < len(centroid):
|
90 |
-
centroid[i] /= k
|
91 |
-
i += 1
|
92 |
-
return centroid
|
93 |
-
|
94 |
-
def populate_embeddings(prompt_json, model_path):
|
95 |
-
errors, successess = 0, 0
|
96 |
-
for v in prompt_json['positive_values']:
|
97 |
-
for p in v['prompts']:
|
98 |
-
if( p['text'] != '' and p['embedding'] == []): # only considering missing embeddings
|
99 |
-
embedding = query_model(p['text'], model_path)
|
100 |
-
if( 'error' in embedding ):
|
101 |
-
p['embedding'] = []
|
102 |
-
errors += 1
|
103 |
-
else:
|
104 |
-
p['embedding'] = embedding.tolist()
|
105 |
-
#successes += 1
|
106 |
-
|
107 |
-
for v in prompt_json['negative_values']:
|
108 |
-
for p in v['prompts']:
|
109 |
-
if(p['text'] != '' and p['embedding'] == []):
|
110 |
-
embedding = query_model(p['text'], model_path)
|
111 |
-
if('error' in embedding):
|
112 |
-
p['embedding'] = []
|
113 |
-
errors += 1
|
114 |
-
else:
|
115 |
-
p['embedding'] = embedding.tolist()
|
116 |
-
#successes += 1
|
117 |
-
return prompt_json
|
118 |
-
|
119 |
-
def populate_centroids(prompt_json):
|
120 |
-
for v in prompt_json['positive_values']:
|
121 |
-
v['centroid'] = get_centroid(v, dimension = 384, k = 10)
|
122 |
-
for v in prompt_json['negative_values']:
|
123 |
-
v['centroid'] = get_centroid(v, dimension = 384, k = 10)
|
124 |
-
return prompt_json
|
125 |
-
|
126 |
-
# Saving the embeddings for a specific LLM
|
127 |
-
def save_json(prompt_json, json_out_file_name):
|
128 |
-
with open(json_out_file_name, 'w') as outfile:
|
129 |
-
json.dump(prompt_json, outfile)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|