File size: 12,513 Bytes
cb71ef5
 
 
5402b60
cb71ef5
 
 
 
 
 
 
 
 
 
5402b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb71ef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5402b60
cb71ef5
5402b60
 
 
cb71ef5
5402b60
cb71ef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5402b60
 
 
 
 
cb71ef5
5402b60
 
 
cb71ef5
5402b60
cb71ef5
5402b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb71ef5
5402b60
 
 
 
 
cb71ef5
 
 
 
 
 
5402b60
cb71ef5
 
5402b60
cb71ef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import itertools
import json
import re
from collections import defaultdict
from functools import partial
from pathlib import Path

import pandas as pd
import requests
import streamlit as st

from generate_text_api import SummarizerGenerator
from model_inferences.utils.files import get_captions_from_vtt, get_transcript


def segmented_control(labels, key, default = None, max_size = 3) -> str:
    """Group of buttons with the given labels. Return the selected label."""
    if key not in st.session_state:
        st.session_state[key] = default or labels[0]

    selected_label = st.session_state[key]

    def set_label(label: str) -> None:
        st.session_state.update(**{key: label})

    cols = st.columns([1] * len(labels))

    for col, label in zip(cols, labels):
        btn_type = "primary" if selected_label == label else "secondary"
        col.button(label, on_click=set_label, args=(label,), use_container_width=True, type=btn_type)

    return selected_label

USE_PARAGRAPHING_MODEL = True

def get_sublist_by_flattened_index(A, i):
    current_index = 0
    for sublist in A:
        sublist_length = len(sublist)
        if current_index <= i < current_index + sublist_length:
            return sublist, A.index(sublist)
        current_index += sublist_length
    return None, None

import requests


def get_talk_metadata(video_id):
    url = "https://www.ted.com/graphql"

    headers = {
        "Content-Type": "application/json",
        "Accept": "application/json",
        "x-operation-name": "Transcript",  # Replace with the actual operation name
    }

    data = {
        "query": """
        query GetTalk($videoId: ID!) {
            video(id: $videoId) {
                title,
                presenterDisplayName,
                nativeDownloads {medium}
            }
        }
        """,
        "variables": {
            "videoId": video_id,  # Corrected key to "videoId"
        },
    }

    response = requests.post(url, json=data, headers=headers)

    if response.status_code == 200:
        result = response.json()
        return result
    else:
        print(f"Error: {response.status_code}, {response.text}")

class OfflineTextSegmenterClient:
    def __init__(self, host_url):
        self.host_url = host_url.rstrip("/") + "/segment"

    def segment(self, text, captions=None, generate_titles=False, threshold=0.4):
        payload = {
            'text': text,
            'captions': captions,
            'generate_titles': generate_titles,
            "prefix_titles": True,
            "threshold": threshold,
        }

        headers = {
            'Content-Type': 'application/json'
        }

        response = requests.post(self.host_url, data=json.dumps(payload), headers=headers).json()
        #segments =  response["annotated_segments"] if "annotated_segments" in response else response["segments"]
        return {'segments':response["segments"], 'titles': response["titles"], 'sentences': response["sentences"]}

class Toc:

    def __init__(self):
        self._items = []
        self._placeholder = None
    
    def title(self, text):
        self._markdown(text, "h1")

    def header(self, text):
        self._markdown(text, "h2", " " * 2)

    def subheader(self, text):
        self._markdown(text, "h3", " " * 4)

    def placeholder(self, sidebar=False):
        self._placeholder = st.sidebar.empty() if sidebar else st.empty()

    def generate(self):
        if self._placeholder:
            self._placeholder.markdown("\n".join(self._items), unsafe_allow_html=True)
    
    def _markdown(self, text, level, space=""):
        key = re.sub(r'[^\w-]', '', text.replace(" ", "-").replace("'", "-").lower())
        st.markdown(f"<{level} id='{key}'>{text}</{level}>", unsafe_allow_html=True)
        self._items.append(f"{space}* <a href='#{key}'>{text}</a>")

import os

endpoint = os.getenv('summarize_stream_url')

client = OfflineTextSegmenterClient(os.getenv('chapterize_url'))
if USE_PARAGRAPHING_MODEL:
    paragrapher = OfflineTextSegmenterClient(os.getenv('paragraph_url'))
summarizer = SummarizerGenerator(endpoint)

import re


def replace_newlines(text):
    updated_text = re.sub(r'\n+', r'\n\n', text)
    return updated_text

def generate_summary(summarizer, generated_text_box, input_, prefix=""):
    all_generated_text = prefix
    for generated_text in summarizer.generate_summary_stream(input_):
        all_generated_text += replace_newlines(generated_text)
        generated_text_box.info(all_generated_text)
    print(all_generated_text)
    return all_generated_text.strip()

st.header("Demo: Intelligent Recap")

if not hasattr(st, 'global_state'):
    st.global_state = {'NIPS 2021 Talks': None, 'TED Talks': None}
    # NIPS 2021 Talks
    transcript_files = itertools.islice(Path("demo_data/nips-2021/").rglob("transcript_whisper_large-v2.vtt"), 15)
    # get titles from metadata.json
    transcripts_map = {}
    for transcript_file in transcript_files:
        base_path = transcript_file.parent
        metadata = base_path / "metadata.json"
        txt_file = base_path / "transcript_whisper_large-v2.txt"
        with open(metadata) as f:
            metadata = json.load(f)
            title = metadata["title"]
            transcript = get_transcript(txt_file)
            captions = get_captions_from_vtt(transcript_file)
            transcripts_map[title] = {"transcript": transcript, "captions": captions, "video": base_path / "video.mp4"}
    st.global_state['NIPS 2021 Talks'] = transcripts_map

    data = pd.read_json("demo_data/ted_talks.json")
    video_ids = data.talk_id.tolist()
    transcripts = data.text.apply(lambda x: " ".join(x)).tolist()
    transcripts_map = {}
    for video_id, transcript in zip(video_ids, transcripts):
        metadata = get_talk_metadata(video_id)
        title = metadata["data"]["video"]["title"]
        presenter = metadata["data"]["video"]["presenterDisplayName"]
        print(metadata["data"])
        if metadata["data"]["video"]["nativeDownloads"] is None:
            continue
        video_url = metadata["data"]["video"]["nativeDownloads"]["medium"]
        transcripts_map[title] = {"transcript": transcript, "video": video_url, "presenter": presenter}
    st.global_state['TED Talks'] = transcripts_map

    def get_lecture_id(path):
        return int(path.parts[-2].split('-')[1])

    transcript_files = Path("demo_data/lectures/").rglob("English.vtt")
    sorted_path_list = sorted(transcript_files, key=get_lecture_id)

    transcripts_map = {}
    for transcript_file in sorted_path_list:
        base_path = transcript_file.parent
        lecture_id = base_path.parts[-1]
        transcript = " ".join([c["text"].strip() for c in get_captions_from_vtt(transcript_file)]).replace("\n", " ")
        video_path = Path(base_path, "video.mp4")
        transcripts_map["Machine Translation: " + lecture_id] = {"transcript": transcript, "video": video_path}
    st.global_state['KIT Lectures'] = transcripts_map

#preloaded_document, youtube_video, custom_text = st.tabs(["Preloaded Document", "YouTube Video", "Custom Text"])
selected = segmented_control(["Preloaded Document", "YouTube Video", "Custom Text"], default="Preloaded Document", key="tabs")

input_text = ""
transcripts_map = defaultdict(dict)

if selected == "Preloaded Document":
    print("Preloaded Document")
    type_of_document = st.selectbox('What kind of document do you want to test it on?', list(st.global_state.keys()))

    transcripts_map = st.global_state[type_of_document]

    selected_talk = st.selectbox("Choose a document...", list(transcripts_map.keys()))

    st.video(str(transcripts_map[selected_talk]['video']), format="video/mp4", start_time=0)

    input_text = st.text_area("Transcript", value=transcripts_map[selected_talk]['transcript'], height=300)

from youtube_transcript_api import NoTranscriptFound, TranscriptsDisabled, YouTubeTranscriptApi


def get_transcript(video_id, lang="en"):
  try:
    transcripts = YouTubeTranscriptApi.list_transcripts(video_id)
    transcript = transcripts.find_manually_created_transcript([lang]).fetch()
  except NoTranscriptFound:
    return transcripts.find_manually_created_transcript(["en", "en-US", "en-GB", "en-CA"]).fetch()
  return transcript

def get_title(video_url):
    response = requests.get(f"https://noembed.com/embed?dataType=json&url={video_url}")
    result = response.json()
    return result["title"]

if selected == "YouTube Video":
    print("YouTube Video")
    video_url = st.text_input("Enter YouTube Link", value="https://www.youtube.com/watch?v=YuIc4mq7zMU")
    video_id = video_url.split("v=")[-1]
    try:
        subs = get_transcript(video_id)
        selected_talk = get_title(video_url)
    except (TranscriptsDisabled, NoTranscriptFound):
        subs = None
    if subs is not None:
        st.video(video_url, format="video/mp4", start_time=0)
        input_text = " ".join([sub["text"] for sub in subs])
        input_text = re.sub(r'\n+', r' ', input_text).replace("  ", " ")
        input_text = st.text_area("Transcript", value=input_text, height=300)
    else:
        st.error("No transcript found for this video.")

if selected == "Custom Text":
    print("Custom Text")
    input_text = st.text_area("Transcript", height=300, placeholder="Insert your transcript here...")
    input_text = re.sub(r'\n+', r' ', input_text)
    selected_talk = "Your Transcript"

toc = Toc()

summarization_todos = []

with st.expander("Adjust Thresholds"):
    threshold = st.slider('Chapter Segmentation Threshold', 0.00, 1.00, value=0.5, step=0.05)
    paragraphing_threshold = st.slider('Paragraphing Threshold', 0.00, 1.00, value=0.5, step=0.05)

if st.button("Process Transcript", disabled=not bool(input_text.strip())):
    with st.sidebar:
        st.header("Table of Contents")
        toc.placeholder()

    st.header(selected_talk, divider='rainbow')
    # if 'presenter' in transcripts_map[selected_talk]:
    #     st.markdown(f"### *by **{transcripts_map[selected_talk]['presenter']}***")

    captions = transcripts_map[selected_talk]['captions'] if 'captions' in transcripts_map[selected_talk] else None
    result = client.segment(input_text, captions, generate_titles=True, threshold=threshold)
    if USE_PARAGRAPHING_MODEL:
        presult = paragrapher.segment(input_text, captions, generate_titles=False, threshold=paragraphing_threshold)
        paragraphs = presult['segments']
    segments, titles, sentences = result['segments'], result['titles'], result['sentences']

    if USE_PARAGRAPHING_MODEL:
        prev_chapter_idx = 0
        prev_paragraph_idx = 0
        segment = []
        for i, sentence in enumerate(sentences):
            chapter, chapter_idx = get_sublist_by_flattened_index(segments, i)
            paragraph, paragraph_idx = get_sublist_by_flattened_index(paragraphs, i)

            if (chapter_idx != prev_chapter_idx and paragraph_idx == prev_paragraph_idx) or (paragraph_idx != prev_paragraph_idx and chapter_idx != prev_chapter_idx):
                print("Chapter / Chapter & Paragraph")
                segment_text = " ".join(segment)
                toc.subheader(titles[prev_chapter_idx])
                if len(segment_text) > 450:
                    generated_text_box = st.info("")
                    summarization_todos.append(partial(generate_summary, summarizer, generated_text_box, segment_text))
                st.write(segment_text)
                segment = []
            elif paragraph_idx != prev_paragraph_idx and chapter_idx == prev_chapter_idx:
                print("Paragraph")
                segment.append("\n\n")
            
            segment.append(sentence)

            prev_chapter_idx = chapter_idx
            prev_paragraph_idx = paragraph_idx

        segment_text = " ".join(segment)
        toc.subheader(titles[prev_chapter_idx])
        generated_text_box = st.info("")
        summarization_todos.append(partial(generate_summary, summarizer, generated_text_box, segment_text))
        st.write(segment_text)

    else:
        segments = [" ".join([sentence for sentence in segment]) for segment in segments]
        for title, segment in zip(titles, segments):
            toc.subheader(title)
            generated_text_box = st.info("")
            summarization_todos.append(partial(generate_summary, summarizer, generated_text_box, segment))
            st.write(segment)
    toc.generate()

for summarization_todo in summarization_todos:
    summarization_todo()