File size: 25,641 Bytes
278278b cd7d2b9 278278b 811d178 cd7d2b9 ce45214 278278b cd7d2b9 278278b cd7d2b9 278278b cd7d2b9 278278b cd7d2b9 278278b cd7d2b9 278278b ce45214 278278b ce45214 278278b ce45214 278278b ce45214 cd7d2b9 ce45214 cd7d2b9 ce45214 cd7d2b9 ce45214 cd7d2b9 ce45214 cd7d2b9 ce45214 cd7d2b9 278278b cd7d2b9 ee8a916 cd7d2b9 ee8a916 cd7d2b9 d1a0b33 ee8a916 d1a0b33 ee8a916 278278b ee8a916 278278b cd7d2b9 278278b cd7d2b9 3d9274d ee8a916 3d9274d 278278b cd7d2b9 278278b ee8a916 278278b cd7d2b9 278278b cd7d2b9 278278b cd7d2b9 278278b cd7d2b9 ce45214 cd7d2b9 ce45214 cd7d2b9 811d178 cd7d2b9 ce45214 278278b cd7d2b9 ce45214 cd7d2b9 74bda08 cd7d2b9 ee8a916 cd7d2b9 ce45214 cd7d2b9 ce45214 cd7d2b9 ee8a916 cd7d2b9 ce45214 cd7d2b9 ce45214 cd7d2b9 ce45214 8a0181f ce45214 cd7d2b9 ce45214 cd7d2b9 ce45214 cd7d2b9 278278b cd7d2b9 278278b cd7d2b9 278278b 3d9274d cd7d2b9 278278b cd7d2b9 278278b 3d9274d cd7d2b9 3d9274d cd7d2b9 3d9274d cd7d2b9 811d178 cd7d2b9 3d9274d cd7d2b9 278278b 3d9274d 278278b 3d9274d 278278b 811d178 278278b cd7d2b9 811d178 278278b cd7d2b9 3d9274d 278278b cd7d2b9 74bda08 d1a0b33 278278b 3d9274d 278278b cd7d2b9 278278b 74bda08 811d178 278278b cd7d2b9 811d178 278278b cd7d2b9 3d9274d 811d178 3d9274d cd7d2b9 74bda08 811d178 74bda08 ee8a916 3d9274d 811d178 3d9274d cd7d2b9 3d9274d 74bda08 3d9274d 74bda08 cd7d2b9 3d9274d 74bda08 3d9274d d78cac8 cd7d2b9 3d9274d cd7d2b9 3d9274d cd7d2b9 13b2570 74bda08 13b2570 cd7d2b9 ee8a916 cd7d2b9 3d9274d cd7d2b9 13b2570 74bda08 811d178 74bda08 ee8a916 74bda08 cd7d2b9 74bda08 ee8a916 74bda08 811d178 74bda08 cd7d2b9 74bda08 cd7d2b9 74bda08 cd7d2b9 74bda08 811d178 74bda08 cd7d2b9 74bda08 ee8a916 74bda08 278278b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
import pathlib
import re
import datetime
import json
import traceback
from botocore.docs.method import document_model_driven_method
from flask import request
from flask_login import login_required, current_user
from elasticsearch_dsl import Q
from pygments import highlight
from sphinx.addnodes import document
from rag.app.qa import rmPrefix, beAdoc
from rag.nlp import search, rag_tokenizer, keyword_extraction
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils import rmSpace
from api.db import LLMType, ParserType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService
from api.db.services.user_service import UserTenantService
from api.utils.api_utils import server_error_response, get_error_data_result, validate_request
from api.db.services.document_service import DocumentService
from api.settings import RetCode, retrievaler, kg_retrievaler
from api.utils.api_utils import get_result
import hashlib
import re
from api.utils.api_utils import get_result, token_required, get_error_data_result
from api.db.db_models import Task, File
from api.db.services.task_service import TaskService, queue_tasks
from api.db.services.user_service import TenantService, UserTenantService
from api.utils.api_utils import server_error_response, get_error_data_result, validate_request
from api.utils.api_utils import get_result, get_result, get_error_data_result
from functools import partial
from io import BytesIO
from elasticsearch_dsl import Q
from flask import request, send_file
from flask_login import login_required
from api.db import FileSource, TaskStatus, FileType
from api.db.db_models import File
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.settings import RetCode, retrievaler
from api.utils.api_utils import construct_json_result, construct_error_response
from rag.app import book, laws, manual, naive, one, paper, presentation, qa, resume, table, picture, audio, email
from rag.nlp import search
from rag.utils import rmSpace
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils.storage_factory import STORAGE_IMPL
MAXIMUM_OF_UPLOADING_FILES = 256
MAXIMUM_OF_UPLOADING_FILES = 256
@manager.route('/dataset/<dataset_id>/document', methods=['POST'])
@token_required
def upload(dataset_id, tenant_id):
if 'file' not in request.files:
return get_error_data_result(
retmsg='No file part!', retcode=RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
for file_obj in file_objs:
if file_obj.filename == '':
return get_result(
retmsg='No file selected!', retcode=RetCode.ARGUMENT_ERROR)
e, kb = KnowledgebaseService.get_by_id(dataset_id)
if not e:
raise LookupError(f"Can't find the knowledgebase with ID {dataset_id}!")
err, _ = FileService.upload_document(kb, file_objs, tenant_id)
if err:
return get_result(
retmsg="\n".join(err), retcode=RetCode.SERVER_ERROR)
return get_result()
@manager.route('/dataset/<dataset_id>/info/<document_id>', methods=['PUT'])
@token_required
def update_doc(tenant_id, dataset_id, document_id):
req = request.json
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg="You don't own the dataset.")
doc = DocumentService.query(kb_id=dataset_id, id=document_id)
if not doc:
return get_error_data_result(retmsg="The dataset doesn't own the document.")
doc = doc[0]
if "chunk_count" in req:
if req["chunk_count"] != doc.chunk_num:
return get_error_data_result(retmsg="Can't change `chunk_count`.")
if "token_count" in req:
if req["token_count"] != doc.token_num:
return get_error_data_result(retmsg="Can't change `token_count`.")
if "progress" in req:
if req['progress'] != doc.progress:
return get_error_data_result(retmsg="Can't change `progress`.")
if "name" in req and req["name"] != doc.name:
if pathlib.Path(req["name"].lower()).suffix != pathlib.Path(doc.name.lower()).suffix:
return get_result(retmsg="The extension of file can't be changed", retcode=RetCode.ARGUMENT_ERROR)
for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
if d.name == req["name"]:
return get_error_data_result(
retmsg="Duplicated document name in the same knowledgebase.")
if not DocumentService.update_by_id(
document_id, {"name": req["name"]}):
return get_error_data_result(
retmsg="Database error (Document rename)!")
informs = File2DocumentService.get_by_document_id(document_id)
if informs:
e, file = FileService.get_by_id(informs[0].file_id)
FileService.update_by_id(file.id, {"name": req["name"]})
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])
if "chunk_method" in req:
if doc.parser_id.lower() == req["chunk_method"].lower():
return get_result()
if doc.type == FileType.VISUAL or re.search(
r"\.(ppt|pptx|pages)$", doc.name):
return get_error_data_result(retmsg="Not supported yet!")
e = DocumentService.update_by_id(doc.id,
{"parser_id": req["chunk_method"], "progress": 0, "progress_msg": "",
"run": TaskStatus.UNSTART.value})
if not e:
return get_error_data_result(retmsg="Document not found!")
if doc.token_num > 0:
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1,
doc.process_duation * -1)
if not e:
return get_error_data_result(retmsg="Document not found!")
tenant_id = DocumentService.get_tenant_id(req["id"])
if not tenant_id:
return get_error_data_result(retmsg="Tenant not found!")
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
return get_result()
@manager.route('/dataset/<dataset_id>/document/<document_id>', methods=['GET'])
@token_required
def download(tenant_id, dataset_id, document_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f'You do not own the dataset {dataset_id}.')
doc = DocumentService.query(kb_id=dataset_id, id=document_id)
if not doc:
return get_error_data_result(retmsg=f'The dataset not own the document {document_id}.')
# The process of downloading
doc_id, doc_location = File2DocumentService.get_storage_address(doc_id=document_id) # minio address
file_stream = STORAGE_IMPL.get(doc_id, doc_location)
if not file_stream:
return construct_json_result(message="This file is empty.", code=RetCode.DATA_ERROR)
file = BytesIO(file_stream)
# Use send_file with a proper filename and MIME type
return send_file(
file,
as_attachment=True,
download_name=doc[0].name,
mimetype='application/octet-stream' # Set a default MIME type
)
@manager.route('/dataset/<dataset_id>/info', methods=['GET'])
@token_required
def list_docs(dataset_id, tenant_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}. ")
id = request.args.get("id")
if not DocumentService.query(id=id,kb_id=dataset_id):
return get_error_data_result(retmsg=f"You don't own the document {id}.")
offset = int(request.args.get("offset", 1))
keywords = request.args.get("keywords","")
limit = int(request.args.get("limit", 1024))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc") == "False":
desc = False
else:
desc = True
docs, tol = DocumentService.get_list(dataset_id, offset, limit, orderby, desc, keywords, id)
# rename key's name
renamed_doc_list = []
for doc in docs:
key_mapping = {
"chunk_num": "chunk_count",
"kb_id": "knowledgebase_id",
"token_num": "token_count",
"parser_id": "chunk_method"
}
renamed_doc = {}
for key, value in doc.items():
new_key = key_mapping.get(key, key)
renamed_doc[new_key] = value
renamed_doc_list.append(renamed_doc)
return get_result(data={"total": tol, "docs": renamed_doc_list})
@manager.route('/dataset/<dataset_id>/document', methods=['DELETE'])
@token_required
def delete(tenant_id,dataset_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}. ")
req = request.json
if not req.get("ids"):
return get_error_data_result(retmsg="`ids` is required")
doc_ids = req["ids"]
root_folder = FileService.get_root_folder(tenant_id)
pf_id = root_folder["id"]
FileService.init_knowledgebase_docs(pf_id, tenant_id)
errors = ""
for doc_id in doc_ids:
try:
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_error_data_result(retmsg="Document not found!")
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_error_data_result(retmsg="Tenant not found!")
b, n = File2DocumentService.get_storage_address(doc_id=doc_id)
if not DocumentService.remove_document(doc, tenant_id):
return get_error_data_result(
retmsg="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc_id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc_id)
STORAGE_IMPL.rm(b, n)
except Exception as e:
errors += str(e)
if errors:
return get_result(retmsg=errors, retcode=RetCode.SERVER_ERROR)
return get_result()
@manager.route('/dataset/<dataset_id>/chunk', methods=['POST'])
@token_required
def parse(tenant_id,dataset_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
req = request.json
if not req.get("document_ids"):
return get_error_data_result("`document_ids` is required")
for id in req["document_ids"]:
if not DocumentService.query(id=id,kb_id=dataset_id):
return get_error_data_result(retmsg=f"You don't own the document {id}.")
info = {"run": "1", "progress": 0}
info["progress_msg"] = ""
info["chunk_num"] = 0
info["token_num"] = 0
DocumentService.update_by_id(id, info)
# if str(req["run"]) == TaskStatus.CANCEL.value:
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=id), idxnm=search.index_name(tenant_id))
TaskService.filter_delete([Task.doc_id == id])
e, doc = DocumentService.get_by_id(id)
doc = doc.to_dict()
doc["tenant_id"] = tenant_id
bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
queue_tasks(doc, bucket, name)
return get_result()
@manager.route('/dataset/<dataset_id>/chunk', methods=['DELETE'])
@token_required
def stop_parsing(tenant_id,dataset_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
req = request.json
if not req.get("document_ids"):
return get_error_data_result("`document_ids` is required")
for id in req["document_ids"]:
doc = DocumentService.query(id=id, kb_id=dataset_id)
if not doc:
return get_error_data_result(retmsg=f"You don't own the document {id}.")
if doc[0].progress == 100.0 or doc[0].progress == 0.0:
return get_error_data_result("Can't stop parsing document with progress at 0 or 100")
info = {"run": "2", "progress": 0}
DocumentService.update_by_id(id, info)
# if str(req["run"]) == TaskStatus.CANCEL.value:
tenant_id = DocumentService.get_tenant_id(id)
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=id), idxnm=search.index_name(tenant_id))
return get_result()
@manager.route('/dataset/<dataset_id>/document/<document_id>/chunk', methods=['GET'])
@token_required
def list_chunks(tenant_id,dataset_id,document_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
doc=DocumentService.query(id=document_id, kb_id=dataset_id)
if not doc:
return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
doc=doc[0]
req = request.args
doc_id = document_id
page = int(req.get("offset", 1))
size = int(req.get("limit", 30))
question = req.get("keywords", "")
query = {
"doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
}
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
origin_chunks = []
sign = 0
for id in sres.ids:
d = {
"chunk_id": id,
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
id].get(
"content_with_weight", ""),
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": sres.field[id]["docnm_kwd"],
"important_kwd": sres.field[id].get("important_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"available_int": sres.field[id].get("available_int", 1),
"positions": sres.field[id].get("position_int", "").split("\t")
}
if len(d["positions"]) % 5 == 0:
poss = []
for i in range(0, len(d["positions"]), 5):
poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
float(d["positions"][i + 3]), float(d["positions"][i + 4])])
d["positions"] = poss
origin_chunks.append(d)
if req.get("id"):
if req.get("id") == id:
origin_chunks.clear()
origin_chunks.append(d)
sign = 1
break
if req.get("id"):
if sign == 0:
return get_error_data_result(f"Can't find this chunk {req.get('id')}")
for chunk in origin_chunks:
key_mapping = {
"chunk_id": "id",
"content_with_weight": "content",
"doc_id": "document_id",
"important_kwd": "important_keywords",
"img_id": "image_id",
}
renamed_chunk = {}
for key, value in chunk.items():
new_key = key_mapping.get(key, key)
renamed_chunk[new_key] = value
res["chunks"].append(renamed_chunk)
return get_result(data=res)
@manager.route('/dataset/<dataset_id>/document/<document_id>/chunk', methods=['POST'])
@token_required
def create(tenant_id,dataset_id,document_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
doc = DocumentService.query(id=document_id, kb_id=dataset_id)
if not doc:
return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
doc = doc[0]
req = request.json
if not req.get("content"):
return get_error_data_result(retmsg="`content` is required")
if "important_keywords" in req:
if type(req["important_keywords"]) != list:
return get_error_data_result("`important_keywords` is required to be a list")
md5 = hashlib.md5()
md5.update((req["content"] + document_id).encode("utf-8"))
chunk_id = md5.hexdigest()
d = {"id": chunk_id, "content_ltks": rag_tokenizer.tokenize(req["content"]),
"content_with_weight": req["content"]}
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
d["important_kwd"] = req.get("important_keywords", [])
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_keywords", [])))
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
d["kb_id"] = [doc.kb_id]
d["docnm_kwd"] = doc.name
d["doc_id"] = doc.id
embd_id = DocumentService.get_embd_id(document_id)
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value, embd_id)
v, c = embd_mdl.encode([doc.name, req["content"]])
v = 0.1 * v[0] + 0.9 * v[1]
d["q_%d_vec" % len(v)] = v.tolist()
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
DocumentService.increment_chunk_num(
doc.id, doc.kb_id, c, 1, 0)
d["chunk_id"] = chunk_id
# rename keys
key_mapping = {
"chunk_id": "id",
"content_with_weight": "content",
"doc_id": "document_id",
"important_kwd": "important_keywords",
"kb_id": "dataset_id",
"create_timestamp_flt": "create_timestamp",
"create_time": "create_time",
"document_keyword": "document",
}
renamed_chunk = {}
for key, value in d.items():
if key in key_mapping:
new_key = key_mapping.get(key, key)
renamed_chunk[new_key] = value
return get_result(data={"chunk": renamed_chunk})
# return get_result(data={"chunk_id": chunk_id})
@manager.route('dataset/<dataset_id>/document/<document_id>/chunk', methods=['DELETE'])
@token_required
def rm_chunk(tenant_id,dataset_id,document_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
doc = DocumentService.query(id=document_id, kb_id=dataset_id)
if not doc:
return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
doc = doc[0]
req = request.json
if not req.get("chunk_ids"):
return get_error_data_result("`chunk_ids` is required")
query = {
"doc_ids": [doc.id], "page": 1, "size": 1024, "question": "", "sort": True}
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
for chunk_id in req.get("chunk_ids"):
if chunk_id not in sres.ids:
return get_error_data_result(f"Chunk {chunk_id} not found")
if not ELASTICSEARCH.deleteByQuery(
Q("ids", values=req["chunk_ids"]), search.index_name(tenant_id)):
return get_error_data_result(retmsg="Index updating failure")
deleted_chunk_ids = req["chunk_ids"]
chunk_number = len(deleted_chunk_ids)
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
return get_result()
@manager.route('/dataset/<dataset_id>/document/<document_id>/chunk/<chunk_id>', methods=['PUT'])
@token_required
def update_chunk(tenant_id,dataset_id,document_id,chunk_id):
try:
res = ELASTICSEARCH.get(
chunk_id, search.index_name(
tenant_id))
except Exception as e:
return get_error_data_result(f"Can't find this chunk {chunk_id}")
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
doc = DocumentService.query(id=document_id, kb_id=dataset_id)
if not doc:
return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
doc = doc[0]
query = {
"doc_ids": [document_id], "page": 1, "size": 1024, "question": "", "sort": True
}
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
if chunk_id not in sres.ids:
return get_error_data_result(f"You don't own the chunk {chunk_id}")
req = request.json
content=res["_source"].get("content_with_weight")
d = {
"id": chunk_id,
"content_with_weight": req.get("content",content)}
d["content_ltks"] = rag_tokenizer.tokenize(d["content_with_weight"])
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
if "important_keywords" in req:
if type(req["important_keywords"]) != list:
return get_error_data_result("`important_keywords` is required to be a list")
d["important_kwd"] = req.get("important_keywords")
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_keywords"]))
if "available" in req:
d["available_int"] = req["available"]
embd_id = DocumentService.get_embd_id(document_id)
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value, embd_id)
if doc.parser_id == ParserType.QA:
arr = [
t for t in re.split(
r"[\n\t]",
d["content_with_weight"]) if len(t) > 1]
if len(arr) != 2:
return get_error_data_result(
retmsg="Q&A must be separated by TAB/ENTER key.")
q, a = rmPrefix(arr[0]), rmPrefix(arr[1])
d = beAdoc(d, arr[0], arr[1], not any(
[rag_tokenizer.is_chinese(t) for t in q + a]))
v, c = embd_mdl.encode([doc.name, d["content_with_weight"]])
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
d["q_%d_vec" % len(v)] = v.tolist()
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
return get_result()
@manager.route('/retrieval', methods=['POST'])
@token_required
def retrieval_test(tenant_id):
req = request.json
if not req.get("datasets"):
return get_error_data_result("`datasets` is required.")
kb_ids = req["datasets"]
kbs = KnowledgebaseService.get_by_ids(kb_ids)
embd_nms = list(set([kb.embd_id for kb in kbs]))
if len(embd_nms) != 1:
return get_result(
retmsg='Knowledge bases use different embedding models or does not exist."',
retcode=RetCode.AUTHENTICATION_ERROR)
if isinstance(kb_ids, str): kb_ids = [kb_ids]
for id in kb_ids:
if not KnowledgebaseService.query(id=id,tenant_id=tenant_id):
return get_error_data_result(f"You don't own the dataset {id}.")
if "question" not in req:
return get_error_data_result("`question` is required.")
page = int(req.get("offset", 1))
size = int(req.get("limit", 30))
question = req["question"]
doc_ids = req.get("documents", [])
similarity_threshold = float(req.get("similarity_threshold", 0.2))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
top = int(req.get("top_k", 1024))
if req.get("highlight")=="False" or req.get("highlight")=="false":
highlight = False
else:
highlight = True
try:
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_error_data_result(retmsg="Knowledgebase not found!")
embd_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
rerank_mdl = None
if req.get("rerank_id"):
rerank_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
if req.get("keyword", False):
chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
retr = retrievaler if kb.parser_id != ParserType.KG else kg_retrievaler
ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl, highlight=highlight)
for c in ranks["chunks"]:
if "vector" in c:
del c["vector"]
##rename keys
renamed_chunks = []
for chunk in ranks["chunks"]:
key_mapping = {
"chunk_id": "id",
"content_with_weight": "content",
"doc_id": "document_id",
"important_kwd": "important_keywords",
"docnm_kwd": "document_keyword"
}
rename_chunk = {}
for key, value in chunk.items():
new_key = key_mapping.get(key, key)
rename_chunk[new_key] = value
renamed_chunks.append(rename_chunk)
ranks["chunks"] = renamed_chunks
return get_result(data=ranks)
except Exception as e:
if str(e).find("not_found") > 0:
return get_result(retmsg=f'No chunk found! Check the chunk status please!',
retcode=RetCode.DATA_ERROR)
return server_error_response(e) |