File size: 13,490 Bytes
e1017ef 9c1ae34 e1017ef 692cc99 9c1ae34 e1017ef 692cc99 e1017ef 9c1ae34 1f1194f e1017ef 9c1ae34 e1017ef 1ca7adb e1017ef 9c1ae34 1ca7adb e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 1ca7adb 1f1194f 1ca7adb e1017ef 692cc99 9c1ae34 e1017ef 9c1ae34 692cc99 9c1ae34 692cc99 9c1ae34 1ca7adb 1f1194f 9c1ae34 692cc99 9c1ae34 692cc99 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 1f1194f 9c1ae34 e1017ef 1f1194f e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 1f1194f 9c1ae34 1ca7adb 9c1ae34 1f1194f 9c1ae34 1f1194f 9c1ae34 1f1194f 9c1ae34 e1017ef 9c1ae34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import os
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor
from copy import deepcopy
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.settings import retrievaler
from api.utils import get_uuid
from api.utils.file_utils import get_project_base_directory
from rag.nlp import tokenize, search
from rag.utils.es_conn import ELASTICSEARCH
from ranx import evaluate
import pandas as pd
from tqdm import tqdm
from ranx import Qrels, Run
class Benchmark:
def __init__(self, kb_id):
e, self.kb = KnowledgebaseService.get_by_id(kb_id)
self.similarity_threshold = self.kb.similarity_threshold
self.vector_similarity_weight = self.kb.vector_similarity_weight
self.embd_mdl = LLMBundle(self.kb.tenant_id, LLMType.EMBEDDING, llm_name=self.kb.embd_id, lang=self.kb.language)
def _get_benchmarks(self, query, dataset_idxnm, count=16):
req = {"question": query, "size": count, "vector": True, "similarity": self.similarity_threshold}
sres = retrievaler.search(req, search.index_name(dataset_idxnm), self.embd_mdl)
return sres
def _get_retrieval(self, qrels, dataset_idxnm):
run = defaultdict(dict)
query_list = list(qrels.keys())
for query in query_list:
ranks = retrievaler.retrieval(query, self.embd_mdl,
dataset_idxnm, [self.kb.id], 1, 30,
0.0, self.vector_similarity_weight)
for c in ranks["chunks"]:
if "vector" in c:
del c["vector"]
run[query][c["chunk_id"]] = c["similarity"]
return run
def embedding(self, docs, batch_size=16):
vects = []
cnts = [d["content_with_weight"] for d in docs]
for i in range(0, len(cnts), batch_size):
vts, c = self.embd_mdl.encode(cnts[i: i + batch_size])
vects.extend(vts.tolist())
assert len(docs) == len(vects)
for i, d in enumerate(docs):
v = vects[i]
d["q_%d_vec" % len(v)] = v
return docs
@staticmethod
def init_kb(index_name):
idxnm = search.index_name(index_name)
if ELASTICSEARCH.indexExist(idxnm):
ELASTICSEARCH.deleteIdx(search.index_name(index_name))
return ELASTICSEARCH.createIdx(idxnm, json.load(
open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
def ms_marco_index(self, file_path, index_name):
qrels = defaultdict(dict)
texts = defaultdict(dict)
docs = []
filelist = os.listdir(file_path)
self.init_kb(index_name)
max_workers = int(os.environ.get('MAX_WORKERS', 3))
exe = ThreadPoolExecutor(max_workers=max_workers)
threads = []
def slow_actions(es_docs, idx_nm):
es_docs = self.embedding(es_docs)
ELASTICSEARCH.bulk(es_docs, idx_nm)
return True
for dir in filelist:
data = pd.read_parquet(os.path.join(file_path, dir))
for i in tqdm(range(len(data)), colour="green", desc="Tokenizing:" + dir):
query = data.iloc[i]['query']
for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']):
d = {
"id": get_uuid(),
"kb_id": self.kb.id,
"docnm_kwd": "xxxxx",
"doc_id": "ksksks"
}
tokenize(d, text, "english")
docs.append(d)
texts[d["id"]] = text
qrels[query][d["id"]] = int(rel)
if len(docs) >= 32:
threads.append(
exe.submit(slow_actions, deepcopy(docs), search.index_name(index_name)))
docs = []
threads.append(
exe.submit(slow_actions, deepcopy(docs), search.index_name(index_name)))
for i in tqdm(range(len(threads)), colour="red", desc="Indexing:" + dir):
if not threads[i].result().output:
print("Indexing error...")
return qrels, texts
def trivia_qa_index(self, file_path, index_name):
qrels = defaultdict(dict)
texts = defaultdict(dict)
docs = []
filelist = os.listdir(file_path)
for dir in filelist:
data = pd.read_parquet(os.path.join(file_path, dir))
for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):
query = data.iloc[i]['question']
for rel, text in zip(data.iloc[i]["search_results"]['rank'],
data.iloc[i]["search_results"]['search_context']):
d = {
"id": get_uuid(),
"kb_id": self.kb.id,
"docnm_kwd": "xxxxx",
"doc_id": "ksksks"
}
tokenize(d, text, "english")
docs.append(d)
texts[d["id"]] = text
qrels[query][d["id"]] = int(rel)
if len(docs) >= 32:
docs = self.embedding(docs)
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
docs = []
docs = self.embedding(docs)
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
return qrels, texts
def miracl_index(self, file_path, corpus_path, index_name):
corpus_total = {}
for corpus_file in os.listdir(corpus_path):
tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True)
for index, i in tmp_data.iterrows():
corpus_total[i['docid']] = i['text']
topics_total = {}
for topics_file in os.listdir(os.path.join(file_path, 'topics')):
if 'test' in topics_file:
continue
tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query'])
for index, i in tmp_data.iterrows():
topics_total[i['qid']] = i['query']
qrels = defaultdict(dict)
texts = defaultdict(dict)
docs = []
for qrels_file in os.listdir(os.path.join(file_path, 'qrels')):
if 'test' in qrels_file:
continue
tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t',
names=['qid', 'Q0', 'docid', 'relevance'])
for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file):
query = topics_total[tmp_data.iloc[i]['qid']]
text = corpus_total[tmp_data.iloc[i]['docid']]
rel = tmp_data.iloc[i]['relevance']
d = {
"id": get_uuid(),
"kb_id": self.kb.id,
"docnm_kwd": "xxxxx",
"doc_id": "ksksks"
}
tokenize(d, text, 'english')
docs.append(d)
texts[d["id"]] = text
qrels[query][d["id"]] = int(rel)
if len(docs) >= 32:
docs = self.embedding(docs)
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
docs = []
docs = self.embedding(docs)
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
return qrels, texts
def save_results(self, qrels, run, texts, dataset, file_path):
keep_result = []
run_keys = list(run.keys())
for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"):
key = run_keys[run_i]
keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key],
'ndcg@10': evaluate(Qrels({key: qrels[key]}), Run({key: run[key]}), "ndcg@10")})
keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10'])
with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f:
f.write('## Score For Every Query\n')
for keep_result_i in keep_result:
f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n')
scores = [[i[0], i[1]] for i in keep_result_i['run'].items()]
scores = sorted(scores, key=lambda kk: kk[1])
for score in scores[:10]:
f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n')
json.dump(qrels, open(os.path.join(file_path, dataset + '.qrels.json'), "w+"), indent=2)
json.dump(run, open(os.path.join(file_path, dataset + '.run.json'), "w+"), indent=2)
print(os.path.join(file_path, dataset + '_result.md'), 'Saved!')
def __call__(self, dataset, file_path, miracl_corpus=''):
if dataset == "ms_marco_v1.1":
qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1")
run = self._get_retrieval(qrels, "benchmark_ms_marco_v1.1")
print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr"]))
self.save_results(qrels, run, texts, dataset, file_path)
if dataset == "trivia_qa":
qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa")
run = self._get_retrieval(qrels, "benchmark_trivia_qa")
print(dataset, evaluate((qrels), Run(run), ["ndcg@10", "map@5", "mrr"]))
self.save_results(qrels, run, texts, dataset, file_path)
if dataset == "miracl":
for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th',
'yo', 'zh']:
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)):
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!')
continue
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')):
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!')
continue
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')):
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!')
continue
if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)):
print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!')
continue
qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang),
os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang),
"benchmark_miracl_" + lang)
run = self._get_retrieval(qrels, "benchmark_miracl_" + lang)
print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr"]))
self.save_results(qrels, run, texts, dataset, file_path)
if __name__ == '__main__':
print('*****************RAGFlow Benchmark*****************')
kb_id = input('Please input kb_id:\n')
ex = Benchmark(kb_id)
dataset = input(
'RAGFlow Benchmark Support:\n\tms_marco_v1.1:<https://huggingface.co/datasets/microsoft/ms_marco>\n\ttrivia_qa:<https://huggingface.co/datasets/mandarjoshi/trivia_qa>\n\tmiracl:<https://huggingface.co/datasets/miracl/miracl>\nPlease input dataset choice:\n')
if dataset in ['ms_marco_v1.1', 'trivia_qa']:
if dataset == "ms_marco_v1.1":
print("Notice: Please provide the ms_marco_v1.1 dataset only. ms_marco_v2.1 is not supported!")
dataset_path = input('Please input ' + dataset + ' dataset path:\n')
ex(dataset, dataset_path)
elif dataset == 'miracl':
dataset_path = input('Please input ' + dataset + ' dataset path:\n')
corpus_path = input('Please input ' + dataset + '-corpus dataset path:\n')
ex(dataset, dataset_path, miracl_corpus=corpus_path)
else:
print("Dataset: ", dataset, "not supported!")
|