File size: 7,942 Bytes
fa82d94 24da205 fa82d94 24da205 fa82d94 24da205 970594e 24da205 fa82d94 24da205 fa82d94 24da205 fa82d94 24da205 8faf53b 24da205 970594e 24da205 fa82d94 24da205 970594e 24da205 fa82d94 24da205 970594e 24da205 fa82d94 24da205 970594e 24da205 fa82d94 24da205 b691127 24da205 970594e 24da205 fa82d94 24da205 2459d65 b691127 fa82d94 24da205 970594e 24da205 fa82d94 24da205 2459d65 b691127 fa82d94 24da205 970594e 24da205 fa82d94 24da205 fa82d94 9753e7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from ragflow_sdk import RAGFlow
from common import HOST_ADDRESS
from time import sleep
def test_parse_document_with_txt(get_api_key_fixture):
API_KEY = get_api_key_fixture
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="test_parse_document")
name = 'ragflow_test.txt'
with open("test_data/ragflow_test.txt", "rb") as file:
blob = file.read()
docs = ds.upload_documents([{"display_name": name, "blob": blob}])
doc = docs[0]
ds.async_parse_documents(document_ids=[doc.id])
'''
for n in range(100):
if doc.progress == 1:
break
sleep(1)
else:
raise Exception("Run time ERROR: Document parsing did not complete in time.")
'''
def test_parse_and_cancel_document(get_api_key_fixture):
API_KEY = get_api_key_fixture
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="test_parse_and_cancel_document")
name = 'ragflow_test.txt'
with open("test_data/ragflow_test.txt", "rb") as file:
blob = file.read()
docs = ds.upload_documents([{"display_name": name, "blob": blob}])
doc = docs[0]
ds.async_parse_documents(document_ids=[doc.id])
sleep(1)
if 0 < doc.progress < 1:
ds.async_cancel_parse_documents(document_ids=[doc.id])
def test_bulk_parse_documents(get_api_key_fixture):
API_KEY = get_api_key_fixture
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="test_bulk_parse_and_cancel_documents")
with open("test_data/ragflow.txt", "rb") as file:
blob = file.read()
documents = [
{'display_name': 'test1.txt', 'blob': blob},
{'display_name': 'test2.txt', 'blob': blob},
{'display_name': 'test3.txt', 'blob': blob}
]
docs = ds.upload_documents(documents)
ids = [doc.id for doc in docs]
ds.async_parse_documents(ids)
'''
for n in range(100):
all_completed = all(doc.progress == 1 for doc in docs)
if all_completed:
break
sleep(1)
else:
raise Exception("Run time ERROR: Bulk document parsing did not complete in time.")
'''
def test_list_chunks_with_success(get_api_key_fixture):
API_KEY = get_api_key_fixture
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="test_list_chunks_with_success")
with open("test_data/ragflow_test.txt", "rb") as file:
blob = file.read()
'''
# chunk_size = 1024 * 1024
# chunks = [blob[i:i + chunk_size] for i in range(0, len(blob), chunk_size)]
documents = [
{'display_name': f'chunk_{i}.txt', 'blob': chunk} for i, chunk in enumerate(chunks)
]
'''
documents = [{"display_name": "test_list_chunks_with_success.txt", "blob": blob}]
docs = ds.upload_documents(documents)
ids = [doc.id for doc in docs]
ds.async_parse_documents(ids)
'''
for n in range(100):
all_completed = all(doc.progress == 1 for doc in docs)
if all_completed:
break
sleep(1)
else:
raise Exception("Run time ERROR: Chunk document parsing did not complete in time.")
'''
doc = docs[0]
doc.list_chunks()
def test_add_chunk_with_success(get_api_key_fixture):
API_KEY = get_api_key_fixture
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="test_add_chunk_with_success")
with open("test_data/ragflow_test.txt", "rb") as file:
blob = file.read()
'''
# chunk_size = 1024 * 1024
# chunks = [blob[i:i + chunk_size] for i in range(0, len(blob), chunk_size)]
documents = [
{'display_name': f'chunk_{i}.txt', 'blob': chunk} for i, chunk in enumerate(chunks)
]
'''
documents = [{"display_name": "test_list_chunks_with_success.txt", "blob": blob}]
docs = ds.upload_documents(documents)
doc = docs[0]
doc.add_chunk(content="This is a chunk addition test")
def test_delete_chunk_with_success(get_api_key_fixture):
API_KEY = get_api_key_fixture
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="test_delete_chunk_with_success")
with open("test_data/ragflow_test.txt", "rb") as file:
blob = file.read()
'''
# chunk_size = 1024 * 1024
# chunks = [blob[i:i + chunk_size] for i in range(0, len(blob), chunk_size)]
documents = [
{'display_name': f'chunk_{i}.txt', 'blob': chunk} for i, chunk in enumerate(chunks)
]
'''
documents = [{"display_name": "test_delete_chunk_with_success.txt", "blob": blob}]
docs = ds.upload_documents(documents)
doc = docs[0]
chunk = doc.add_chunk(content="This is a chunk addition test")
sleep(5)
doc.delete_chunks([chunk.id])
def test_update_chunk_content(get_api_key_fixture):
API_KEY = get_api_key_fixture
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="test_update_chunk_content_with_success")
with open("test_data/ragflow_test.txt", "rb") as file:
blob = file.read()
'''
# chunk_size = 1024 * 1024
# chunks = [blob[i:i + chunk_size] for i in range(0, len(blob), chunk_size)]
documents = [
{'display_name': f'chunk_{i}.txt', 'blob': chunk} for i, chunk in enumerate(chunks)
]
'''
documents = [{"display_name": "test_update_chunk_content_with_success.txt", "blob": blob}]
docs = ds.upload_documents(documents)
doc = docs[0]
chunk = doc.add_chunk(content="This is a chunk addition test")
# For Elasticsearch, the chunk is not searchable in shot time (~2s).
sleep(3)
chunk.update({"content": "This is a updated content"})
def test_update_chunk_available(get_api_key_fixture):
API_KEY = get_api_key_fixture
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="test_update_chunk_available_with_success")
with open("test_data/ragflow_test.txt", "rb") as file:
blob = file.read()
'''
# chunk_size = 1024 * 1024
# chunks = [blob[i:i + chunk_size] for i in range(0, len(blob), chunk_size)]
documents = [
{'display_name': f'chunk_{i}.txt', 'blob': chunk} for i, chunk in enumerate(chunks)
]
'''
documents = [{"display_name": "test_update_chunk_available_with_success.txt", "blob": blob}]
docs = ds.upload_documents(documents)
doc = docs[0]
chunk = doc.add_chunk(content="This is a chunk addition test")
# For Elasticsearch, the chunk is not searchable in shot time (~2s).
sleep(3)
chunk.update({"available": 0})
def test_retrieve_chunks(get_api_key_fixture):
API_KEY = get_api_key_fixture
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="retrieval")
with open("test_data/ragflow_test.txt", "rb") as file:
blob = file.read()
'''
# chunk_size = 1024 * 1024
# chunks = [blob[i:i + chunk_size] for i in range(0, len(blob), chunk_size)]
documents = [
{'display_name': f'chunk_{i}.txt', 'blob': chunk} for i, chunk in enumerate(chunks)
]
'''
documents = [{"display_name": "test_retrieve_chunks.txt", "blob": blob}]
docs = ds.upload_documents(documents)
doc = docs[0]
doc.add_chunk(content="This is a chunk addition test")
rag.retrieve(dataset_ids=[ds.id], document_ids=[doc.id])
rag.delete_datasets(ids=[ds.id])
# test different parameters for the retrieval
|