File size: 1,919 Bytes
6858ec5 d0db329 6858ec5 d0db329 3245107 6858ec5 d0db329 6858ec5 d0db329 6858ec5 d0db329 3245107 d0db329 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
from abc import ABC
from openai import OpenAI
from FlagEmbedding import FlagModel
import torch
import os
import numpy as np
class Base(ABC):
def encode(self, texts: list, batch_size=32):
raise NotImplementedError("Please implement encode method!")
class HuEmbedding(Base):
def __init__(self):
"""
If you have trouble downloading HuggingFace models, -_^ this might help!!
For Linux:
export HF_ENDPOINT=https://hf-mirror.com
For Windows:
Good luck
^_-
"""
self.model = FlagModel("BAAI/bge-large-zh-v1.5",
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
use_fp16=torch.cuda.is_available())
def encode(self, texts: list, batch_size=32):
res = []
for i in range(0, len(texts), batch_size):
res.extend(self.model.encode(texts[i:i + batch_size]).tolist())
return np.array(res)
class GptEmbed(Base):
def __init__(self):
self.client = OpenAI(api_key=os.envirement["OPENAI_API_KEY"])
def encode(self, texts: list, batch_size=32):
res = self.client.embeddings.create(input=texts,
model="text-embedding-ada-002")
return [d["embedding"] for d in res["data"]]
class QWenEmbd(Base):
def encode(self, texts: list, batch_size=32, text_type="document"):
# export DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY
import dashscope
from http import HTTPStatus
res = []
for txt in texts:
resp = dashscope.TextEmbedding.call(
model=dashscope.TextEmbedding.Models.text_embedding_v2,
input=txt[:2048],
text_type=text_type
)
res.append(resp["output"]["embeddings"][0]["embedding"])
return res
|