File size: 8,369 Bytes
3245107
d0db329
 
3245107
 
 
 
 
 
 
 
d0db329
 
 
3fc700a
3245107
 
 
d0db329
 
 
 
 
3245107
 
 
 
 
d0db329
3245107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0db329
 
 
3245107
 
 
 
 
d0db329
3245107
 
 
 
d0db329
3245107
 
d0db329
 
 
3245107
 
d0db329
 
 
 
 
 
3245107
 
d0db329
3245107
 
 
 
d0db329
3245107
 
d0db329
 
 
3245107
 
 
d0db329
3245107
 
 
 
 
d0db329
 
 
 
3245107
 
 
 
 
d0db329
 
 
 
 
 
 
 
3245107
 
 
d0db329
 
 
3245107
 
 
 
 
 
 
d0db329
 
 
 
 
3245107
 
 
 
 
 
 
d0db329
 
3245107
 
 
 
 
d0db329
 
 
 
 
 
3245107
 
d0db329
 
3245107
 
d0db329
 
3245107
 
 
 
 
 
d0db329
 
3245107
d0db329
 
 
3245107
 
 
d0db329
3245107
 
d0db329
 
3245107
d0db329
 
3245107
 
 
d0db329
 
 
 
 
 
 
3245107
 
 
 
d0db329
3245107
 
 
 
 
 
d0db329
 
3245107
 
d0db329
3245107
 
 
 
 
 
 
 
d0db329
3245107
 
 
 
 
d0db329
 
 
 
 
 
 
 
 
 
 
3245107
 
 
 
 
d0db329
3245107
 
 
 
 
 
d0db329
3245107
d0db329
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import re
from elasticsearch_dsl import Q, Search, A
from typing import List, Optional, Tuple, Dict, Union
from dataclasses import dataclass
from util import setup_logging, rmSpace
from nlp import huqie, query
from datetime import datetime
from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity
import numpy as np
from copy import deepcopy


def index_name(uid): return f"docgpt_{uid}"


class Dealer:
    def __init__(self, es, emb_mdl):
        self.qryr = query.EsQueryer(es)
        self.qryr.flds = [
            "title_tks^10",
            "title_sm_tks^5",
            "content_ltks^2",
            "content_sm_ltks"]
        self.es = es
        self.emb_mdl = emb_mdl

    @dataclass
    class SearchResult:
        total: int
        ids: List[str]
        query_vector: List[float] = None
        field: Optional[Dict] = None
        highlight: Optional[Dict] = None
        aggregation: Union[List, Dict, None] = None
        keywords: Optional[List[str]] = None
        group_docs: List[List] = None

    def _vector(self, txt, sim=0.8, topk=10):
        return {
            "field": "q_vec",
            "k": topk,
            "similarity": sim,
            "num_candidates": 1000,
            "query_vector": self.emb_mdl.encode_queries(txt)
        }

    def search(self, req, idxnm, tks_num=3):
        keywords = []
        qst = req.get("question", "")

        bqry, keywords = self.qryr.question(qst)
        if req.get("kb_ids"):
            bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
        bqry.filter.append(Q("exists", field="q_tks"))
        bqry.boost = 0.05
        print(bqry)

        s = Search()
        pg = int(req.get("page", 1)) - 1
        ps = int(req.get("size", 1000))
        src = req.get("field", ["docnm_kwd", "content_ltks", "kb_id",
                                "image_id", "doc_id", "q_vec"])

        s = s.query(bqry)[pg * ps:(pg + 1) * ps]
        s = s.highlight("content_ltks")
        s = s.highlight("title_ltks")
        if not qst:
            s = s.sort(
                {"create_time": {"order": "desc", "unmapped_type": "date"}})

        s = s.highlight_options(
            fragment_size=120,
            number_of_fragments=5,
            boundary_scanner_locale="zh-CN",
            boundary_scanner="SENTENCE",
            boundary_chars=",./;:\\!(),。?:!……()——、"
        )
        s = s.to_dict()
        q_vec = []
        if req.get("vector"):
            s["knn"] = self._vector(qst, req.get("similarity", 0.4), ps)
            s["knn"]["filter"] = bqry.to_dict()
            del s["highlight"]
            q_vec = s["knn"]["query_vector"]
        res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
        print("TOTAL: ", self.es.getTotal(res))
        if self.es.getTotal(res) == 0 and "knn" in s:
            bqry, _ = self.qryr.question(qst, min_match="10%")
            if req.get("kb_ids"):
                bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
            s["query"] = bqry.to_dict()
            s["knn"]["filter"] = bqry.to_dict()
            s["knn"]["similarity"] = 0.7
            res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)

        kwds = set([])
        for k in keywords:
            kwds.add(k)
            for kk in huqie.qieqie(k).split(" "):
                if len(kk) < 2:
                    continue
                if kk in kwds:
                    continue
                kwds.add(kk)

        aggs = self.getAggregation(res, "docnm_kwd")

        return self.SearchResult(
            total=self.es.getTotal(res),
            ids=self.es.getDocIds(res),
            query_vector=q_vec,
            aggregation=aggs,
            highlight=self.getHighlight(res),
            field=self.getFields(res, ["docnm_kwd", "content_ltks",
                                       "kb_id", "image_id", "doc_id", "q_vec"]),
            keywords=list(kwds)
        )

    def getAggregation(self, res, g):
        if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
            return
        bkts = res["aggregations"]["aggs_" + g]["buckets"]
        return [(b["key"], b["doc_count"]) for b in bkts]

    def getHighlight(self, res):
        def rmspace(line):
            eng = set(list("qwertyuioplkjhgfdsazxcvbnm"))
            r = []
            for t in line.split(" "):
                if not t:
                    continue
                if len(r) > 0 and len(
                        t) > 0 and r[-1][-1] in eng and t[0] in eng:
                    r.append(" ")
                r.append(t)
            r = "".join(r)
            return r

        ans = {}
        for d in res["hits"]["hits"]:
            hlts = d.get("highlight")
            if not hlts:
                continue
            ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]])
        return ans

    def getFields(self, sres, flds):
        res = {}
        if not flds:
            return {}
        for d in self.es.getSource(sres):
            m = {n: d.get(n) for n in flds if d.get(n) is not None}
            for n, v in m.items():
                if isinstance(v, type([])):
                    m[n] = "\t".join([str(vv) for vv in v])
                    continue
                if not isinstance(v, type("")):
                    m[n] = str(m[n])
                m[n] = rmSpace(m[n])

            if m:
                res[d["id"]] = m
        return res

    @staticmethod
    def trans2floats(txt):
        return [float(t) for t in txt.split("\t")]

    def insert_citations(self, ans, top_idx, sres,
                         vfield="q_vec", cfield="content_ltks"):

        ins_embd = [Dealer.trans2floats(
            sres.field[sres.ids[i]][vfield]) for i in top_idx]
        ins_tw = [sres.field[sres.ids[i]][cfield].split(" ") for i in top_idx]
        s = 0
        e = 0
        res = ""

        def citeit():
            nonlocal s, e, ans, res
            if not ins_embd:
                return
            embd = self.emb_mdl.encode(ans[s: e])
            sim = self.qryr.hybrid_similarity(embd,
                                              ins_embd,
                                              huqie.qie(ans[s:e]).split(" "),
                                              ins_tw)
            print(ans[s: e], sim)
            mx = np.max(sim) * 0.99
            if mx < 0.55:
                return
            cita = list(set([top_idx[i]
                        for i in range(len(ins_embd)) if sim[i] > mx]))[:4]
            for i in cita:
                res += f"@?{i}?@"

            return cita

        punct = set(";。?!!")
        if not self.qryr.isChinese(ans):
            punct.add("?")
            punct.add(".")
        while e < len(ans):
            if e - s < 12 or ans[e] not in punct:
                e += 1
                continue
            if ans[e] == "." and e + \
                    1 < len(ans) and re.match(r"[0-9]", ans[e + 1]):
                e += 1
                continue
            if ans[e] == "." and e - 2 >= 0 and ans[e - 2] == "\n":
                e += 1
                continue
            res += ans[s: e]
            citeit()
            res += ans[e]
            e += 1
            s = e

        if s < len(ans):
            res += ans[s:]
            citeit()

        return res

    def rerank(self, sres, query, tkweight=0.3, vtweight=0.7,
               vfield="q_vec", cfield="content_ltks"):
        ins_embd = [
            Dealer.trans2floats(
                sres.field[i]["q_vec"]) for i in sres.ids]
        if not ins_embd:
            return []
        ins_tw = [sres.field[i][cfield].split(" ") for i in sres.ids]
        # return CosineSimilarity([sres.query_vector], ins_embd)[0]
        sim = self.qryr.hybrid_similarity(sres.query_vector,
                                          ins_embd,
                                          huqie.qie(query).split(" "),
                                          ins_tw, tkweight, vtweight)
        return sim


if __name__ == "__main__":
    from util import es_conn
    SE = Dealer(es_conn.HuEs("infiniflow"))
    qs = [
        "胡凯",
        ""
    ]
    for q in qs:
        print(">>>>>>>>>>>>>>>>>>>>", q)
        print(SE.search(
            {"question": q, "kb_ids": "64f072a75f3b97c865718c4a"}, "infiniflow_*"))