File size: 8,573 Bytes
47ec63e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import json
import logging
from functools import reduce, partial
import networkx as nx

from api import settings
from graphrag.general.community_reports_extractor import CommunityReportsExtractor
from graphrag.entity_resolution import EntityResolution
from graphrag.general.extractor import Extractor
from graphrag.general.graph_extractor import DEFAULT_ENTITY_TYPES
from graphrag.utils import graph_merge, set_entity, get_relation, set_relation, get_entity, get_graph, set_graph, \
    chunk_id, update_nodes_pagerank_nhop_neighbour
from rag.nlp import rag_tokenizer, search
from rag.utils.redis_conn import RedisDistributedLock


class Dealer:
    def __init__(self,
                 extractor: Extractor,
                 tenant_id: str,
                 kb_id: str,
                 llm_bdl,
                 chunks: list[tuple[str, str]],
                 language,
                 entity_types=DEFAULT_ENTITY_TYPES,
                 embed_bdl=None,
                 callback=None
                 ):
        docids = list(set([docid for docid,_ in chunks]))
        self.llm_bdl = llm_bdl
        self.embed_bdl = embed_bdl
        ext = extractor(self.llm_bdl, language=language,
                        entity_types=entity_types,
                        get_entity=partial(get_entity, tenant_id, kb_id),
                        set_entity=partial(set_entity, tenant_id, kb_id, self.embed_bdl),
                        get_relation=partial(get_relation, tenant_id, kb_id),
                        set_relation=partial(set_relation, tenant_id, kb_id, self.embed_bdl)
                        )
        ents, rels = ext(chunks, callback)
        self.graph = nx.Graph()
        for en in ents:
            self.graph.add_node(en["entity_name"], entity_type=en["entity_type"])#, description=en["description"])

        for rel in rels:
            self.graph.add_edge(
                rel["src_id"],
                rel["tgt_id"],
                weight=rel["weight"],
                #description=rel["description"]
            )

        with RedisDistributedLock(kb_id, 60*60):
            old_graph, old_doc_ids = get_graph(tenant_id, kb_id)
            if old_graph is not None:
                logging.info("Merge with an exiting graph...................")
                self.graph = reduce(graph_merge, [old_graph, self.graph])
            update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, self.graph, 2)
            if old_doc_ids:
                docids.extend(old_doc_ids)
                docids = list(set(docids))
            set_graph(tenant_id, kb_id, self.graph, docids)


class WithResolution(Dealer):
    def __init__(self,
                 tenant_id: str,
                 kb_id: str,
                 llm_bdl,
                 embed_bdl=None,
                 callback=None
                 ):
        self.llm_bdl = llm_bdl
        self.embed_bdl = embed_bdl

        with RedisDistributedLock(kb_id, 60*60):
            self.graph, doc_ids = get_graph(tenant_id, kb_id)
            if not self.graph:
                logging.error(f"Faild to fetch the graph. tenant_id:{kb_id}, kb_id:{kb_id}")
                if callback:
                    callback(-1, msg="Faild to fetch the graph.")
                return

            if callback:
                callback(msg="Fetch the existing graph.")
            er = EntityResolution(self.llm_bdl,
                                  get_entity=partial(get_entity, tenant_id, kb_id),
                                  set_entity=partial(set_entity, tenant_id, kb_id, self.embed_bdl),
                                  get_relation=partial(get_relation, tenant_id, kb_id),
                                  set_relation=partial(set_relation, tenant_id, kb_id, self.embed_bdl))
            reso = er(self.graph)
            self.graph = reso.graph
            logging.info("Graph resolution is done. Remove {} nodes.".format(len(reso.removed_entities)))
            if callback:
                callback(msg="Graph resolution is done. Remove {} nodes.".format(len(reso.removed_entities)))
            update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, self.graph, 2)
            set_graph(tenant_id, kb_id, self.graph, doc_ids)

        settings.docStoreConn.delete({
            "knowledge_graph_kwd": "relation",
            "kb_id": kb_id,
            "from_entity_kwd": reso.removed_entities
        }, search.index_name(tenant_id), kb_id)
        settings.docStoreConn.delete({
            "knowledge_graph_kwd": "relation",
            "kb_id": kb_id,
            "to_entity_kwd": reso.removed_entities
        }, search.index_name(tenant_id), kb_id)
        settings.docStoreConn.delete({
            "knowledge_graph_kwd": "entity",
            "kb_id": kb_id,
            "entity_kwd": reso.removed_entities
        }, search.index_name(tenant_id), kb_id)


class WithCommunity(Dealer):
    def __init__(self,
                 tenant_id: str,
                 kb_id: str,
                 llm_bdl,
                 embed_bdl=None,
                 callback=None
                 ):

        self.community_structure = None
        self.community_reports = None
        self.llm_bdl = llm_bdl
        self.embed_bdl = embed_bdl

        with RedisDistributedLock(kb_id, 60*60):
            self.graph, doc_ids = get_graph(tenant_id, kb_id)
            if not self.graph:
                logging.error(f"Faild to fetch the graph. tenant_id:{kb_id}, kb_id:{kb_id}")
                if callback:
                    callback(-1, msg="Faild to fetch the graph.")
                return
            if callback:
                callback(msg="Fetch the existing graph.")

            cr = CommunityReportsExtractor(self.llm_bdl,
                                  get_entity=partial(get_entity, tenant_id, kb_id),
                                  set_entity=partial(set_entity, tenant_id, kb_id, self.embed_bdl),
                                  get_relation=partial(get_relation, tenant_id, kb_id),
                                  set_relation=partial(set_relation, tenant_id, kb_id, self.embed_bdl))
            cr = cr(self.graph, callback=callback)
            self.community_structure = cr.structured_output
            self.community_reports = cr.output
            set_graph(tenant_id, kb_id, self.graph, doc_ids)

        if callback:
            callback(msg="Graph community extraction is done. Indexing {} reports.".format(len(cr.structured_output)))

        settings.docStoreConn.delete({
            "knowledge_graph_kwd": "community_report",
            "kb_id": kb_id
        }, search.index_name(tenant_id), kb_id)

        for stru, rep in zip(self.community_structure, self.community_reports):
            obj = {
                "report": rep,
                "evidences": "\n".join([f["explanation"] for f in stru["findings"]])
            }
            chunk = {
                "docnm_kwd": stru["title"],
                "title_tks": rag_tokenizer.tokenize(stru["title"]),
                "content_with_weight": json.dumps(obj, ensure_ascii=False),
                "content_ltks": rag_tokenizer.tokenize(obj["report"] +" "+ obj["evidences"]),
                "knowledge_graph_kwd": "community_report",
                "weight_flt": stru["weight"],
                "entities_kwd": stru["entities"],
                "important_kwd": stru["entities"],
                "kb_id": kb_id,
                "source_id": doc_ids,
                "available_int": 0
            }
            chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
            #try:
            #    ebd, _ = self.embed_bdl.encode([", ".join(community["entities"])])
            #    chunk["q_%d_vec" % len(ebd[0])] = ebd[0]
            #except Exception as e:
            #    logging.exception(f"Fail to embed entity relation: {e}")
            settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id))