File size: 7,933 Bytes
47ec63e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# Licensed under the MIT License
"""
Reference:
- [LightRag](https://github.com/HKUDS/LightRAG)
- [MiniRAG](https://github.com/HKUDS/MiniRAG)
"""
PROMPTS = {}
PROMPTS["minirag_query2kwd"] = """---Role---
You are a helpful assistant tasked with identifying both answer-type and low-level keywords in the user's query.
---Goal---
Given the query, list both answer-type and low-level keywords.
answer_type_keywords focus on the type of the answer to the certain query, while low-level keywords focus on specific entities, details, or concrete terms.
The answer_type_keywords must be selected from Answer type pool.
This pool is in the form of a dictionary, where the key represents the Type you should choose from and the value represents the example samples.
---Instructions---
- Output the keywords in JSON format.
- The JSON should have three keys:
- "answer_type_keywords" for the types of the answer. In this list, the types with the highest likelihood should be placed at the forefront. No more than 3.
- "entities_from_query" for specific entities or details. It must be extracted from the query.
######################
-Examples-
######################
Example 1:
Query: "How does international trade influence global economic stability?"
Answer type pool: {{
'PERSONAL LIFE': ['FAMILY TIME', 'HOME MAINTENANCE'],
'STRATEGY': ['MARKETING PLAN', 'BUSINESS EXPANSION'],
'SERVICE FACILITATION': ['ONLINE SUPPORT', 'CUSTOMER SERVICE TRAINING'],
'PERSON': ['JANE DOE', 'JOHN SMITH'],
'FOOD': ['PASTA', 'SUSHI'],
'EMOTION': ['HAPPINESS', 'ANGER'],
'PERSONAL EXPERIENCE': ['TRAVEL ABROAD', 'STUDYING ABROAD'],
'INTERACTION': ['TEAM MEETING', 'NETWORKING EVENT'],
'BEVERAGE': ['COFFEE', 'TEA'],
'PLAN': ['ANNUAL BUDGET', 'PROJECT TIMELINE'],
'GEO': ['NEW YORK CITY', 'SOUTH AFRICA'],
'GEAR': ['CAMPING TENT', 'CYCLING HELMET'],
'EMOJI': ['π', 'π'],
'BEHAVIOR': ['POSITIVE FEEDBACK', 'NEGATIVE CRITICISM'],
'TONE': ['FORMAL', 'INFORMAL'],
'LOCATION': ['DOWNTOWN', 'SUBURBS']
}}
################
Output:
{{
"answer_type_keywords": ["STRATEGY","PERSONAL LIFE"],
"entities_from_query": ["Trade agreements", "Tariffs", "Currency exchange", "Imports", "Exports"]
}}
#############################
Example 2:
Query: "When was SpaceX's first rocket launch?"
Answer type pool: {{
'DATE AND TIME': ['2023-10-10 10:00', 'THIS AFTERNOON'],
'ORGANIZATION': ['GLOBAL INITIATIVES CORPORATION', 'LOCAL COMMUNITY CENTER'],
'PERSONAL LIFE': ['DAILY EXERCISE ROUTINE', 'FAMILY VACATION PLANNING'],
'STRATEGY': ['NEW PRODUCT LAUNCH', 'YEAR-END SALES BOOST'],
'SERVICE FACILITATION': ['REMOTE IT SUPPORT', 'ON-SITE TRAINING SESSIONS'],
'PERSON': ['ALEXANDER HAMILTON', 'MARIA CURIE'],
'FOOD': ['GRILLED SALMON', 'VEGETARIAN BURRITO'],
'EMOTION': ['EXCITEMENT', 'DISAPPOINTMENT'],
'PERSONAL EXPERIENCE': ['BIRTHDAY CELEBRATION', 'FIRST MARATHON'],
'INTERACTION': ['OFFICE WATER COOLER CHAT', 'ONLINE FORUM DEBATE'],
'BEVERAGE': ['ICED COFFEE', 'GREEN SMOOTHIE'],
'PLAN': ['WEEKLY MEETING SCHEDULE', 'MONTHLY BUDGET OVERVIEW'],
'GEO': ['MOUNT EVEREST BASE CAMP', 'THE GREAT BARRIER REEF'],
'GEAR': ['PROFESSIONAL CAMERA EQUIPMENT', 'OUTDOOR HIKING GEAR'],
'EMOJI': ['π
', 'β°'],
'BEHAVIOR': ['PUNCTUALITY', 'HONESTY'],
'TONE': ['CONFIDENTIAL', 'SATIRICAL'],
'LOCATION': ['CENTRAL PARK', 'DOWNTOWN LIBRARY']
}}
################
Output:
{{
"answer_type_keywords": ["DATE AND TIME", "ORGANIZATION", "PLAN"],
"entities_from_query": ["SpaceX", "Rocket launch", "Aerospace", "Power Recovery"]
}}
#############################
Example 3:
Query: "What is the role of education in reducing poverty?"
Answer type pool: {{
'PERSONAL LIFE': ['MANAGING WORK-LIFE BALANCE', 'HOME IMPROVEMENT PROJECTS'],
'STRATEGY': ['MARKETING STRATEGIES FOR Q4', 'EXPANDING INTO NEW MARKETS'],
'SERVICE FACILITATION': ['CUSTOMER SATISFACTION SURVEYS', 'STAFF RETENTION PROGRAMS'],
'PERSON': ['ALBERT EINSTEIN', 'MARIA CALLAS'],
'FOOD': ['PAN-FRIED STEAK', 'POACHED EGGS'],
'EMOTION': ['OVERWHELM', 'CONTENTMENT'],
'PERSONAL EXPERIENCE': ['LIVING ABROAD', 'STARTING A NEW JOB'],
'INTERACTION': ['SOCIAL MEDIA ENGAGEMENT', 'PUBLIC SPEAKING'],
'BEVERAGE': ['CAPPUCCINO', 'MATCHA LATTE'],
'PLAN': ['ANNUAL FITNESS GOALS', 'QUARTERLY BUSINESS REVIEW'],
'GEO': ['THE AMAZON RAINFOREST', 'THE GRAND CANYON'],
'GEAR': ['SURFING ESSENTIALS', 'CYCLING ACCESSORIES'],
'EMOJI': ['π»', 'π±'],
'BEHAVIOR': ['TEAMWORK', 'LEADERSHIP'],
'TONE': ['FORMAL MEETING', 'CASUAL CONVERSATION'],
'LOCATION': ['URBAN CITY CENTER', 'RURAL COUNTRYSIDE']
}}
################
Output:
{{
"answer_type_keywords": ["STRATEGY", "PERSON"],
"entities_from_query": ["School access", "Literacy rates", "Job training", "Income inequality"]
}}
#############################
Example 4:
Query: "Where is the capital of the United States?"
Answer type pool: {{
'ORGANIZATION': ['GREENPEACE', 'RED CROSS'],
'PERSONAL LIFE': ['DAILY WORKOUT', 'HOME COOKING'],
'STRATEGY': ['FINANCIAL INVESTMENT', 'BUSINESS EXPANSION'],
'SERVICE FACILITATION': ['ONLINE SUPPORT', 'CUSTOMER SERVICE TRAINING'],
'PERSON': ['ALBERTA SMITH', 'BENJAMIN JONES'],
'FOOD': ['PASTA CARBONARA', 'SUSHI PLATTER'],
'EMOTION': ['HAPPINESS', 'SADNESS'],
'PERSONAL EXPERIENCE': ['TRAVEL ADVENTURE', 'BOOK CLUB'],
'INTERACTION': ['TEAM BUILDING', 'NETWORKING MEETUP'],
'BEVERAGE': ['LATTE', 'GREEN TEA'],
'PLAN': ['WEIGHT LOSS', 'CAREER DEVELOPMENT'],
'GEO': ['PARIS', 'NEW YORK'],
'GEAR': ['CAMERA', 'HEADPHONES'],
'EMOJI': ['π’', 'π'],
'BEHAVIOR': ['POSITIVE THINKING', 'STRESS MANAGEMENT'],
'TONE': ['FRIENDLY', 'PROFESSIONAL'],
'LOCATION': ['DOWNTOWN', 'SUBURBS']
}}
################
Output:
{{
"answer_type_keywords": ["LOCATION"],
"entities_from_query": ["capital of the United States", "Washington", "New York"]
}}
#############################
-Real Data-
######################
Query: {query}
Answer type pool:{TYPE_POOL}
######################
Output:
"""
PROMPTS["keywords_extraction"] = """---Role---
You are a helpful assistant tasked with identifying both high-level and low-level keywords in the user's query.
---Goal---
Given the query, list both high-level and low-level keywords. High-level keywords focus on overarching concepts or themes, while low-level keywords focus on specific entities, details, or concrete terms.
---Instructions---
- Output the keywords in JSON format.
- The JSON should have two keys:
- "high_level_keywords" for overarching concepts or themes.
- "low_level_keywords" for specific entities or details.
######################
-Examples-
######################
{examples}
#############################
-Real Data-
######################
Query: {query}
######################
The `Output` should be human text, not unicode characters. Keep the same language as `Query`.
Output:
"""
PROMPTS["keywords_extraction_examples"] = [
"""Example 1:
Query: "How does international trade influence global economic stability?"
################
Output:
{
"high_level_keywords": ["International trade", "Global economic stability", "Economic impact"],
"low_level_keywords": ["Trade agreements", "Tariffs", "Currency exchange", "Imports", "Exports"]
}
#############################""",
"""Example 2:
Query: "What are the environmental consequences of deforestation on biodiversity?"
################
Output:
{
"high_level_keywords": ["Environmental consequences", "Deforestation", "Biodiversity loss"],
"low_level_keywords": ["Species extinction", "Habitat destruction", "Carbon emissions", "Rainforest", "Ecosystem"]
}
#############################""",
"""Example 3:
Query: "What is the role of education in reducing poverty?"
################
Output:
{
"high_level_keywords": ["Education", "Poverty reduction", "Socioeconomic development"],
"low_level_keywords": ["School access", "Literacy rates", "Job training", "Income inequality"]
}
#############################""",
]
|