File size: 7,933 Bytes
47ec63e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Licensed under the MIT License
"""
Reference:
 - [LightRag](https://github.com/HKUDS/LightRAG)
 - [MiniRAG](https://github.com/HKUDS/MiniRAG)
"""
PROMPTS = {}

PROMPTS["minirag_query2kwd"] = """---Role---

You are a helpful assistant tasked with identifying both answer-type and low-level keywords in the user's query.

---Goal---

Given the query, list both answer-type and low-level keywords.
answer_type_keywords focus on the type of the answer to the certain query, while low-level keywords focus on specific entities, details, or concrete terms.
The answer_type_keywords must be selected from Answer type pool. 
This pool is in the form of a dictionary, where the key represents the Type you should choose from and the value represents the example samples.

---Instructions---

- Output the keywords in JSON format.
- The JSON should have three keys:
  - "answer_type_keywords" for the types of the answer. In this list, the types with the highest likelihood should be placed at the forefront. No more than 3.
  - "entities_from_query" for specific entities or details. It must be extracted from the query.
######################
-Examples-
######################
Example 1:

Query: "How does international trade influence global economic stability?"
Answer type pool: {{
 'PERSONAL LIFE': ['FAMILY TIME', 'HOME MAINTENANCE'],
 'STRATEGY': ['MARKETING PLAN', 'BUSINESS EXPANSION'],
 'SERVICE FACILITATION': ['ONLINE SUPPORT', 'CUSTOMER SERVICE TRAINING'],
 'PERSON': ['JANE DOE', 'JOHN SMITH'],
 'FOOD': ['PASTA', 'SUSHI'],
 'EMOTION': ['HAPPINESS', 'ANGER'],
 'PERSONAL EXPERIENCE': ['TRAVEL ABROAD', 'STUDYING ABROAD'],
 'INTERACTION': ['TEAM MEETING', 'NETWORKING EVENT'],
 'BEVERAGE': ['COFFEE', 'TEA'],
 'PLAN': ['ANNUAL BUDGET', 'PROJECT TIMELINE'],
 'GEO': ['NEW YORK CITY', 'SOUTH AFRICA'],
 'GEAR': ['CAMPING TENT', 'CYCLING HELMET'],
 'EMOJI': ['πŸŽ‰', 'πŸš€'],
 'BEHAVIOR': ['POSITIVE FEEDBACK', 'NEGATIVE CRITICISM'],
 'TONE': ['FORMAL', 'INFORMAL'],
 'LOCATION': ['DOWNTOWN', 'SUBURBS']
}}
################
Output:
{{
  "answer_type_keywords": ["STRATEGY","PERSONAL LIFE"],
  "entities_from_query": ["Trade agreements", "Tariffs", "Currency exchange", "Imports", "Exports"]
}}
#############################
Example 2:

Query: "When was SpaceX's first rocket launch?"
Answer type pool: {{
 'DATE AND TIME': ['2023-10-10 10:00', 'THIS AFTERNOON'],
 'ORGANIZATION': ['GLOBAL INITIATIVES CORPORATION', 'LOCAL COMMUNITY CENTER'],
 'PERSONAL LIFE': ['DAILY EXERCISE ROUTINE', 'FAMILY VACATION PLANNING'],
 'STRATEGY': ['NEW PRODUCT LAUNCH', 'YEAR-END SALES BOOST'],
 'SERVICE FACILITATION': ['REMOTE IT SUPPORT', 'ON-SITE TRAINING SESSIONS'],
 'PERSON': ['ALEXANDER HAMILTON', 'MARIA CURIE'],
 'FOOD': ['GRILLED SALMON', 'VEGETARIAN BURRITO'],
 'EMOTION': ['EXCITEMENT', 'DISAPPOINTMENT'],
 'PERSONAL EXPERIENCE': ['BIRTHDAY CELEBRATION', 'FIRST MARATHON'],
 'INTERACTION': ['OFFICE WATER COOLER CHAT', 'ONLINE FORUM DEBATE'],
 'BEVERAGE': ['ICED COFFEE', 'GREEN SMOOTHIE'],
 'PLAN': ['WEEKLY MEETING SCHEDULE', 'MONTHLY BUDGET OVERVIEW'],
 'GEO': ['MOUNT EVEREST BASE CAMP', 'THE GREAT BARRIER REEF'],
 'GEAR': ['PROFESSIONAL CAMERA EQUIPMENT', 'OUTDOOR HIKING GEAR'],
 'EMOJI': ['πŸ“…', '⏰'],
 'BEHAVIOR': ['PUNCTUALITY', 'HONESTY'],
 'TONE': ['CONFIDENTIAL', 'SATIRICAL'],
 'LOCATION': ['CENTRAL PARK', 'DOWNTOWN LIBRARY']
}}

################
Output:
{{
  "answer_type_keywords": ["DATE AND TIME", "ORGANIZATION", "PLAN"],
  "entities_from_query": ["SpaceX", "Rocket launch", "Aerospace", "Power Recovery"]

}}
#############################
Example 3:

Query: "What is the role of education in reducing poverty?"
Answer type pool: {{
 'PERSONAL LIFE': ['MANAGING WORK-LIFE BALANCE', 'HOME IMPROVEMENT PROJECTS'],
 'STRATEGY': ['MARKETING STRATEGIES FOR Q4', 'EXPANDING INTO NEW MARKETS'],
 'SERVICE FACILITATION': ['CUSTOMER SATISFACTION SURVEYS', 'STAFF RETENTION PROGRAMS'],
 'PERSON': ['ALBERT EINSTEIN', 'MARIA CALLAS'],
 'FOOD': ['PAN-FRIED STEAK', 'POACHED EGGS'],
 'EMOTION': ['OVERWHELM', 'CONTENTMENT'],
 'PERSONAL EXPERIENCE': ['LIVING ABROAD', 'STARTING A NEW JOB'],
 'INTERACTION': ['SOCIAL MEDIA ENGAGEMENT', 'PUBLIC SPEAKING'],
 'BEVERAGE': ['CAPPUCCINO', 'MATCHA LATTE'],
 'PLAN': ['ANNUAL FITNESS GOALS', 'QUARTERLY BUSINESS REVIEW'],
 'GEO': ['THE AMAZON RAINFOREST', 'THE GRAND CANYON'],
 'GEAR': ['SURFING ESSENTIALS', 'CYCLING ACCESSORIES'],
 'EMOJI': ['πŸ’»', 'πŸ“±'],
 'BEHAVIOR': ['TEAMWORK', 'LEADERSHIP'],
 'TONE': ['FORMAL MEETING', 'CASUAL CONVERSATION'],
 'LOCATION': ['URBAN CITY CENTER', 'RURAL COUNTRYSIDE']
}}

################
Output:
{{
  "answer_type_keywords": ["STRATEGY", "PERSON"],
  "entities_from_query": ["School access", "Literacy rates", "Job training", "Income inequality"]
}}
#############################
Example 4:

Query: "Where is the capital of the United States?"
Answer type pool: {{
 'ORGANIZATION': ['GREENPEACE', 'RED CROSS'],
 'PERSONAL LIFE': ['DAILY WORKOUT', 'HOME COOKING'],
 'STRATEGY': ['FINANCIAL INVESTMENT', 'BUSINESS EXPANSION'],
 'SERVICE FACILITATION': ['ONLINE SUPPORT', 'CUSTOMER SERVICE TRAINING'],
 'PERSON': ['ALBERTA SMITH', 'BENJAMIN JONES'],
 'FOOD': ['PASTA CARBONARA', 'SUSHI PLATTER'],
 'EMOTION': ['HAPPINESS', 'SADNESS'],
 'PERSONAL EXPERIENCE': ['TRAVEL ADVENTURE', 'BOOK CLUB'],
 'INTERACTION': ['TEAM BUILDING', 'NETWORKING MEETUP'],
 'BEVERAGE': ['LATTE', 'GREEN TEA'],
 'PLAN': ['WEIGHT LOSS', 'CAREER DEVELOPMENT'],
 'GEO': ['PARIS', 'NEW YORK'],
 'GEAR': ['CAMERA', 'HEADPHONES'],
 'EMOJI': ['🏒', '🌍'],
 'BEHAVIOR': ['POSITIVE THINKING', 'STRESS MANAGEMENT'],
 'TONE': ['FRIENDLY', 'PROFESSIONAL'],
 'LOCATION': ['DOWNTOWN', 'SUBURBS']
}}
################
Output:
{{
  "answer_type_keywords": ["LOCATION"],
  "entities_from_query": ["capital of the United States", "Washington", "New York"]
}}
#############################

-Real Data-
######################
Query: {query}
Answer type pool:{TYPE_POOL}
######################
Output:

"""

PROMPTS["keywords_extraction"] = """---Role---

You are a helpful assistant tasked with identifying both high-level and low-level keywords in the user's query.

---Goal---

Given the query, list both high-level and low-level keywords. High-level keywords focus on overarching concepts or themes, while low-level keywords focus on specific entities, details, or concrete terms.

---Instructions---

- Output the keywords in JSON format.
- The JSON should have two keys:
  - "high_level_keywords" for overarching concepts or themes.
  - "low_level_keywords" for specific entities or details.

######################
-Examples-
######################
{examples}

#############################
-Real Data-
######################
Query: {query}
######################
The `Output` should be human text, not unicode characters. Keep the same language as `Query`.
Output:

"""

PROMPTS["keywords_extraction_examples"] = [
    """Example 1:

Query: "How does international trade influence global economic stability?"
################
Output:
{
  "high_level_keywords": ["International trade", "Global economic stability", "Economic impact"],
  "low_level_keywords": ["Trade agreements", "Tariffs", "Currency exchange", "Imports", "Exports"]
}
#############################""",
    """Example 2:

Query: "What are the environmental consequences of deforestation on biodiversity?"
################
Output:
{
  "high_level_keywords": ["Environmental consequences", "Deforestation", "Biodiversity loss"],
  "low_level_keywords": ["Species extinction", "Habitat destruction", "Carbon emissions", "Rainforest", "Ecosystem"]
}
#############################""",
    """Example 3:

Query: "What is the role of education in reducing poverty?"
################
Output:
{
  "high_level_keywords": ["Education", "Poverty reduction", "Socioeconomic development"],
  "low_level_keywords": ["School access", "Literacy rates", "Job training", "Income inequality"]
}
#############################""",
]