|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List |
|
|
|
import requests |
|
|
|
from .modules.chat_assistant import Assistant |
|
from .modules.dataset import DataSet |
|
|
|
|
|
class RAGFlow: |
|
def __init__(self, user_key, base_url, version='v1'): |
|
""" |
|
api_url: http://<host_address>/api/v1 |
|
""" |
|
self.user_key = user_key |
|
self.api_url = f"{base_url}/api/{version}" |
|
self.authorization_header = {"Authorization": "{} {}".format("Bearer", self.user_key)} |
|
|
|
def post(self, path, param): |
|
res = requests.post(url=self.api_url + path, json=param, headers=self.authorization_header) |
|
return res |
|
|
|
def get(self, path, params=None): |
|
res = requests.get(url=self.api_url + path, params=params, headers=self.authorization_header) |
|
return res |
|
|
|
def delete(self, path, params): |
|
res = requests.delete(url=self.api_url + path, params=params, headers=self.authorization_header) |
|
return res |
|
|
|
def create_dataset(self, name: str, avatar: str = "", description: str = "", language: str = "English", |
|
permission: str = "me", |
|
document_count: int = 0, chunk_count: int = 0, parse_method: str = "naive", |
|
parser_config: DataSet.ParserConfig = None) -> DataSet: |
|
if parser_config is None: |
|
parser_config = DataSet.ParserConfig(self, {"chunk_token_count": 128, "layout_recognize": True, |
|
"delimiter": "\n!?。;!?", "task_page_size": 12}) |
|
parser_config = parser_config.to_json() |
|
res = self.post("/dataset/save", |
|
{"name": name, "avatar": avatar, "description": description, "language": language, |
|
"permission": permission, |
|
"document_count": document_count, "chunk_count": chunk_count, "parse_method": parse_method, |
|
"parser_config": parser_config |
|
} |
|
) |
|
res = res.json() |
|
if res.get("retmsg") == "success": |
|
return DataSet(self, res["data"]) |
|
raise Exception(res["retmsg"]) |
|
|
|
def list_datasets(self, page: int = 1, page_size: int = 1024, orderby: str = "create_time", desc: bool = True) -> \ |
|
List[DataSet]: |
|
res = self.get("/dataset/list", {"page": page, "page_size": page_size, "orderby": orderby, "desc": desc}) |
|
res = res.json() |
|
result_list = [] |
|
if res.get("retmsg") == "success": |
|
for data in res['data']: |
|
result_list.append(DataSet(self, data)) |
|
return result_list |
|
raise Exception(res["retmsg"]) |
|
|
|
def get_dataset(self, id: str = None, name: str = None) -> DataSet: |
|
res = self.get("/dataset/detail", {"id": id, "name": name}) |
|
res = res.json() |
|
if res.get("retmsg") == "success": |
|
return DataSet(self, res['data']) |
|
raise Exception(res["retmsg"]) |
|
|
|
def create_assistant(self, name: str = "assistant", avatar: str = "path", knowledgebases: List[DataSet] = [], |
|
llm: Assistant.LLM = None, prompt: Assistant.Prompt = None) -> Assistant: |
|
datasets = [] |
|
for dataset in knowledgebases: |
|
datasets.append(dataset.to_json()) |
|
|
|
if llm is None: |
|
llm = Assistant.LLM(self, {"model_name": None, |
|
"temperature": 0.1, |
|
"top_p": 0.3, |
|
"presence_penalty": 0.4, |
|
"frequency_penalty": 0.7, |
|
"max_tokens": 512, }) |
|
if prompt is None: |
|
prompt = Assistant.Prompt(self, {"similarity_threshold": 0.2, |
|
"keywords_similarity_weight": 0.7, |
|
"top_n": 8, |
|
"variables": [{ |
|
"key": "knowledge", |
|
"optional": True |
|
}], "rerank_model": "", |
|
"empty_response": None, |
|
"opener": None, |
|
"show_quote": True, |
|
"prompt": None}) |
|
if prompt.opener is None: |
|
prompt.opener = "Hi! I'm your assistant, what can I do for you?" |
|
if prompt.prompt is None: |
|
prompt.prompt = ( |
|
"You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. " |
|
"Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, " |
|
"your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' " |
|
"Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base." |
|
) |
|
|
|
temp_dict = {"name": name, |
|
"avatar": avatar, |
|
"knowledgebases": datasets, |
|
"llm": llm.to_json(), |
|
"prompt": prompt.to_json()} |
|
res = self.post("/assistant/save", temp_dict) |
|
res = res.json() |
|
if res.get("retmsg") == "success": |
|
return Assistant(self, res["data"]) |
|
raise Exception(res["retmsg"]) |
|
|
|
def get_assistant(self, id: str = None, name: str = None) -> Assistant: |
|
res = self.get("/assistant/get", {"id": id, "name": name}) |
|
res = res.json() |
|
if res.get("retmsg") == "success": |
|
return Assistant(self, res['data']) |
|
raise Exception(res["retmsg"]) |
|
|
|
def list_assistants(self) -> List[Assistant]: |
|
res = self.get("/assistant/list") |
|
res = res.json() |
|
result_list = [] |
|
if res.get("retmsg") == "success": |
|
for data in res['data']: |
|
result_list.append(Assistant(self, data)) |
|
return result_list |
|
raise Exception(res["retmsg"]) |
|
|