Last commit not found
# | |
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import json | |
import logging | |
from collections import defaultdict | |
from copy import deepcopy | |
import json_repair | |
import pandas as pd | |
from api.utils import get_uuid | |
from graphrag.query_analyze_prompt import PROMPTS | |
from graphrag.utils import get_entity_type2sampels, get_llm_cache, set_llm_cache, get_relation | |
from rag.utils import num_tokens_from_string | |
from rag.utils.doc_store_conn import OrderByExpr | |
from rag.nlp.search import Dealer, index_name | |
class KGSearch(Dealer): | |
def _chat(self, llm_bdl, system, history, gen_conf): | |
response = get_llm_cache(llm_bdl.llm_name, system, history, gen_conf) | |
if response: | |
return response | |
response = llm_bdl.chat(system, history, gen_conf) | |
if response.find("**ERROR**") >= 0: | |
raise Exception(response) | |
set_llm_cache(llm_bdl.llm_name, system, response, history, gen_conf) | |
return response | |
def query_rewrite(self, llm, question, idxnms, kb_ids): | |
ty2ents = get_entity_type2sampels(idxnms, kb_ids) | |
hint_prompt = PROMPTS["minirag_query2kwd"].format(query=question, | |
TYPE_POOL=json.dumps(ty2ents, ensure_ascii=False, indent=2)) | |
result = self._chat(llm, hint_prompt, [{"role": "user", "content": "Output:"}], {"temperature": .5}) | |
try: | |
keywords_data = json_repair.loads(result) | |
type_keywords = keywords_data.get("answer_type_keywords", []) | |
entities_from_query = keywords_data.get("entities_from_query", [])[:5] | |
return type_keywords, entities_from_query | |
except json_repair.JSONDecodeError: | |
try: | |
result = result.replace(hint_prompt[:-1], '').replace('user', '').replace('model', '').strip() | |
result = '{' + result.split('{')[1].split('}')[0] + '}' | |
keywords_data = json_repair.loads(result) | |
type_keywords = keywords_data.get("answer_type_keywords", []) | |
entities_from_query = keywords_data.get("entities_from_query", [])[:5] | |
return type_keywords, entities_from_query | |
# Handle parsing error | |
except Exception as e: | |
logging.exception(f"JSON parsing error: {result} -> {e}") | |
raise e | |
def _ent_info_from_(self, es_res, sim_thr=0.3): | |
res = {} | |
es_res = self.dataStore.getFields(es_res, ["content_with_weight", "_score", "entity_kwd", "rank_flt", | |
"n_hop_with_weight"]) | |
for _, ent in es_res.items(): | |
if float(ent.get("_score", 0)) < sim_thr: | |
continue | |
if isinstance(ent["entity_kwd"], list): | |
ent["entity_kwd"] = ent["entity_kwd"][0] | |
res[ent["entity_kwd"]] = { | |
"sim": float(ent.get("_score", 0)), | |
"pagerank": float(ent.get("rank_flt", 0)), | |
"n_hop_ents": json.loads(ent.get("n_hop_with_weight", "[]")), | |
"description": ent.get("content_with_weight", "{}") | |
} | |
return res | |
def _relation_info_from_(self, es_res, sim_thr=0.3): | |
res = {} | |
es_res = self.dataStore.getFields(es_res, ["content_with_weight", "_score", "from_entity_kwd", "to_entity_kwd", | |
"weight_int"]) | |
for _, ent in es_res.items(): | |
if float(ent["_score"]) < sim_thr: | |
continue | |
f, t = sorted([ent["from_entity_kwd"], ent["to_entity_kwd"]]) | |
if isinstance(f, list): | |
f = f[0] | |
if isinstance(t, list): | |
t = t[0] | |
res[(f, t)] = { | |
"sim": float(ent["_score"]), | |
"pagerank": float(ent.get("weight_int", 0)), | |
"description": ent["content_with_weight"] | |
} | |
return res | |
def get_relevant_ents_by_keywords(self, keywords, filters, idxnms, kb_ids, emb_mdl, sim_thr=0.3, N=56): | |
if not keywords: | |
return {} | |
filters = deepcopy(filters) | |
filters["knowledge_graph_kwd"] = "entity" | |
matchDense = self.get_vector(", ".join(keywords), emb_mdl, 1024, sim_thr) | |
es_res = self.dataStore.search(["content_with_weight", "entity_kwd", "rank_flt"], [], filters, [matchDense], | |
OrderByExpr(), 0, N, | |
idxnms, kb_ids) | |
return self._ent_info_from_(es_res, sim_thr) | |
def get_relevant_relations_by_txt(self, txt, filters, idxnms, kb_ids, emb_mdl, sim_thr=0.3, N=56): | |
if not txt: | |
return {} | |
filters = deepcopy(filters) | |
filters["knowledge_graph_kwd"] = "relation" | |
matchDense = self.get_vector(txt, emb_mdl, 1024, sim_thr) | |
es_res = self.dataStore.search( | |
["content_with_weight", "_score", "from_entity_kwd", "to_entity_kwd", "weight_int"], | |
[], filters, [matchDense], OrderByExpr(), 0, N, idxnms, kb_ids) | |
return self._relation_info_from_(es_res, sim_thr) | |
def get_relevant_ents_by_types(self, types, filters, idxnms, kb_ids, N=56): | |
if not types: | |
return {} | |
filters = deepcopy(filters) | |
filters["knowledge_graph_kwd"] = "entity" | |
filters["entity_type_kwd"] = types | |
ordr = OrderByExpr() | |
ordr.desc("rank_flt") | |
es_res = self.dataStore.search(["entity_kwd", "rank_flt"], [], filters, [], ordr, 0, N, | |
idxnms, kb_ids) | |
return self._ent_info_from_(es_res, 0) | |
def retrieval(self, question: str, | |
tenant_ids: str | list[str], | |
kb_ids: list[str], | |
emb_mdl, | |
llm, | |
max_token: int = 8196, | |
ent_topn: int = 6, | |
rel_topn: int = 6, | |
comm_topn: int = 1, | |
ent_sim_threshold: float = 0.3, | |
rel_sim_threshold: float = 0.3, | |
): | |
qst = question | |
filters = self.get_filters({"kb_ids": kb_ids}) | |
if isinstance(tenant_ids, str): | |
tenant_ids = tenant_ids.split(",") | |
idxnms = [index_name(tid) for tid in tenant_ids] | |
ty_kwds = [] | |
ents = [] | |
try: | |
ty_kwds, ents = self.query_rewrite(llm, qst, [index_name(tid) for tid in tenant_ids], kb_ids) | |
logging.info(f"Q: {qst}, Types: {ty_kwds}, Entities: {ents}") | |
except Exception as e: | |
logging.exception(e) | |
ents = [qst] | |
pass | |
ents_from_query = self.get_relevant_ents_by_keywords(ents, filters, idxnms, kb_ids, emb_mdl, ent_sim_threshold) | |
ents_from_types = self.get_relevant_ents_by_types(ty_kwds, filters, idxnms, kb_ids, 10000) | |
rels_from_txt = self.get_relevant_relations_by_txt(qst, filters, idxnms, kb_ids, emb_mdl, rel_sim_threshold) | |
nhop_pathes = defaultdict(dict) | |
for _, ent in ents_from_query.items(): | |
nhops = ent.get("n_hop_ents", []) | |
for nbr in nhops: | |
path = nbr["path"] | |
wts = nbr["weights"] | |
for i in range(len(path) - 1): | |
f, t = path[i], path[i + 1] | |
if (f, t) in nhop_pathes: | |
nhop_pathes[(f, t)]["sim"] += ent["sim"] / (2 + i) | |
else: | |
nhop_pathes[(f, t)]["sim"] = ent["sim"] / (2 + i) | |
nhop_pathes[(f, t)]["pagerank"] = wts[i] | |
logging.info("Retrieved entities: {}".format(list(ents_from_query.keys()))) | |
logging.info("Retrieved relations: {}".format(list(rels_from_txt.keys()))) | |
logging.info("Retrieved entities from types({}): {}".format(ty_kwds, list(ents_from_types.keys()))) | |
logging.info("Retrieved N-hops: {}".format(list(nhop_pathes.keys()))) | |
# P(E|Q) => P(E) * P(Q|E) => pagerank * sim | |
for ent in ents_from_types.keys(): | |
if ent not in ents_from_query: | |
continue | |
ents_from_query[ent]["sim"] *= 2 | |
for (f, t) in rels_from_txt.keys(): | |
pair = tuple(sorted([f, t])) | |
s = 0 | |
if pair in nhop_pathes: | |
s += nhop_pathes[pair]["sim"] | |
del nhop_pathes[pair] | |
if f in ents_from_types: | |
s += 1 | |
if t in ents_from_types: | |
s += 1 | |
rels_from_txt[(f, t)]["sim"] *= s + 1 | |
# This is for the relations from n-hop but not by query search | |
for (f, t) in nhop_pathes.keys(): | |
s = 0 | |
if f in ents_from_types: | |
s += 1 | |
if t in ents_from_types: | |
s += 1 | |
rels_from_txt[(f, t)] = { | |
"sim": nhop_pathes[(f, t)]["sim"] * (s + 1), | |
"pagerank": nhop_pathes[(f, t)]["pagerank"] | |
} | |
ents_from_query = sorted(ents_from_query.items(), key=lambda x: x[1]["sim"] * x[1]["pagerank"], reverse=True)[ | |
:ent_topn] | |
rels_from_txt = sorted(rels_from_txt.items(), key=lambda x: x[1]["sim"] * x[1]["pagerank"], reverse=True)[ | |
:rel_topn] | |
ents = [] | |
relas = [] | |
for n, ent in ents_from_query: | |
ents.append({ | |
"Entity": n, | |
"Score": "%.2f" % (ent["sim"] * ent["pagerank"]), | |
"Description": json.loads(ent["description"]).get("description", "") | |
}) | |
max_token -= num_tokens_from_string(str(ents[-1])) | |
if max_token <= 0: | |
ents = ents[:-1] | |
break | |
for (f, t), rel in rels_from_txt: | |
if not rel.get("description"): | |
for tid in tenant_ids: | |
rela = get_relation(tid, kb_ids, f, t) | |
if rela: | |
break | |
else: | |
continue | |
rel["description"] = rela["description"] | |
relas.append({ | |
"From Entity": f, | |
"To Entity": t, | |
"Score": "%.2f" % (rel["sim"] * rel["pagerank"]), | |
"Description": json.loads(ent["description"]).get("description", "") | |
}) | |
max_token -= num_tokens_from_string(str(relas[-1])) | |
if max_token <= 0: | |
relas = relas[:-1] | |
break | |
if ents: | |
ents = "\n---- Entities ----\n{}".format(pd.DataFrame(ents).to_csv()) | |
else: | |
ents = "" | |
if relas: | |
relas = "\n---- Relations ----\n{}".format(pd.DataFrame(relas).to_csv()) | |
else: | |
relas = "" | |
return { | |
"chunk_id": get_uuid(), | |
"content_ltks": "", | |
"content_with_weight": ents + relas + self._community_retrival_([n for n, _ in ents_from_query], filters, kb_ids, idxnms, | |
comm_topn, max_token), | |
"doc_id": "", | |
"docnm_kwd": "Related content in Knowledge Graph", | |
"kb_id": kb_ids, | |
"important_kwd": [], | |
"image_id": "", | |
"similarity": 1., | |
"vector_similarity": 1., | |
"term_similarity": 0, | |
"vector": [], | |
"positions": [], | |
} | |
def _community_retrival_(self, entities, condition, kb_ids, idxnms, topn, max_token): | |
## Community retrieval | |
fields = ["docnm_kwd", "content_with_weight"] | |
odr = OrderByExpr() | |
odr.desc("weight_flt") | |
fltr = deepcopy(condition) | |
fltr["knowledge_graph_kwd"] = "community_report" | |
fltr["entities_kwd"] = entities | |
comm_res = self.dataStore.search(fields, [], fltr, [], | |
OrderByExpr(), 0, topn, idxnms, kb_ids) | |
comm_res_fields = self.dataStore.getFields(comm_res, fields) | |
txts = [] | |
for ii, (_, row) in enumerate(comm_res_fields.items()): | |
obj = json.loads(row["content_with_weight"]) | |
txts.append("# {}. {}\n## Content\n{}\n## Evidences\n{}\n".format( | |
ii + 1, row["docnm_kwd"], obj["report"], obj["evidences"])) | |
max_token -= num_tokens_from_string(str(txts[-1])) | |
if not txts: | |
return "" | |
return "\n---- Community Report ----\n" + "\n".join(txts) | |
if __name__ == "__main__": | |
from api import settings | |
import argparse | |
from api.db import LLMType | |
from api.db.services.knowledgebase_service import KnowledgebaseService | |
from api.db.services.llm_service import LLMBundle | |
from api.db.services.user_service import TenantService | |
from rag.nlp import search | |
settings.init_settings() | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-t', '--tenant_id', default=False, help="Tenant ID", action='store', required=True) | |
parser.add_argument('-d', '--kb_id', default=False, help="Knowledge base ID", action='store', required=True) | |
parser.add_argument('-q', '--question', default=False, help="Question", action='store', required=True) | |
args = parser.parse_args() | |
kb_id = args.kb_id | |
_, tenant = TenantService.get_by_id(args.tenant_id) | |
llm_bdl = LLMBundle(args.tenant_id, LLMType.CHAT, tenant.llm_id) | |
_, kb = KnowledgebaseService.get_by_id(kb_id) | |
embed_bdl = LLMBundle(args.tenant_id, LLMType.EMBEDDING, kb.embd_id) | |
kg = KGSearch(settings.docStoreConn) | |
print(kg.retrieval({"question": args.question, "kb_ids": [kb_id]}, | |
search.index_name(kb.tenant_id), [kb_id], embed_bdl, llm_bdl)) | |