add support for LocalLLM (#1744)
Browse files### What problem does this PR solve?
add support for LocalLLM
### Type of change
- [x] New Feature (non-breaking change which adds functionality)
---------
Co-authored-by: Zhedong Cen <[email protected]>
- rag/llm/chat_model.py +36 -23
- rag/svr/jina_server.py +93 -0
rag/llm/chat_model.py
CHANGED
@@ -27,6 +27,8 @@ from groq import Groq
|
|
27 |
import os
|
28 |
import json
|
29 |
import requests
|
|
|
|
|
30 |
|
31 |
class Base(ABC):
|
32 |
def __init__(self, key, model_name, base_url):
|
@@ -381,8 +383,10 @@ class LocalLLM(Base):
|
|
381 |
|
382 |
def __conn(self):
|
383 |
from multiprocessing.connection import Client
|
|
|
384 |
self._connection = Client(
|
385 |
-
(self.host, self.port), authkey=b
|
|
|
386 |
|
387 |
def __getattr__(self, name):
|
388 |
import pickle
|
@@ -390,8 +394,7 @@ class LocalLLM(Base):
|
|
390 |
def do_rpc(*args, **kwargs):
|
391 |
for _ in range(3):
|
392 |
try:
|
393 |
-
self._connection.send(
|
394 |
-
pickle.dumps((name, args, kwargs)))
|
395 |
return pickle.loads(self._connection.recv())
|
396 |
except Exception as e:
|
397 |
self.__conn()
|
@@ -399,35 +402,45 @@ class LocalLLM(Base):
|
|
399 |
|
400 |
return do_rpc
|
401 |
|
402 |
-
def __init__(self, key, model_name
|
403 |
-
|
404 |
|
405 |
-
|
406 |
-
if system:
|
407 |
-
history.insert(0, {"role": "system", "content": system})
|
408 |
-
try:
|
409 |
-
ans = self.client.chat(
|
410 |
-
history,
|
411 |
-
gen_conf
|
412 |
-
)
|
413 |
-
return ans, num_tokens_from_string(ans)
|
414 |
-
except Exception as e:
|
415 |
-
return "**ERROR**: " + str(e), 0
|
416 |
|
417 |
-
def
|
418 |
if system:
|
419 |
history.insert(0, {"role": "system", "content": system})
|
420 |
-
|
|
|
|
|
|
|
|
|
421 |
answer = ""
|
422 |
try:
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
except Exception as e:
|
428 |
yield answer + "\n**ERROR**: " + str(e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
|
430 |
-
|
|
|
|
|
431 |
|
432 |
|
433 |
class VolcEngineChat(Base):
|
|
|
27 |
import os
|
28 |
import json
|
29 |
import requests
|
30 |
+
import asyncio
|
31 |
+
from rag.svr.jina_server import Prompt,Generation
|
32 |
|
33 |
class Base(ABC):
|
34 |
def __init__(self, key, model_name, base_url):
|
|
|
383 |
|
384 |
def __conn(self):
|
385 |
from multiprocessing.connection import Client
|
386 |
+
|
387 |
self._connection = Client(
|
388 |
+
(self.host, self.port), authkey=b"infiniflow-token4kevinhu"
|
389 |
+
)
|
390 |
|
391 |
def __getattr__(self, name):
|
392 |
import pickle
|
|
|
394 |
def do_rpc(*args, **kwargs):
|
395 |
for _ in range(3):
|
396 |
try:
|
397 |
+
self._connection.send(pickle.dumps((name, args, kwargs)))
|
|
|
398 |
return pickle.loads(self._connection.recv())
|
399 |
except Exception as e:
|
400 |
self.__conn()
|
|
|
402 |
|
403 |
return do_rpc
|
404 |
|
405 |
+
def __init__(self, key, model_name):
|
406 |
+
from jina import Client
|
407 |
|
408 |
+
self.client = Client(port=12345, protocol="grpc", asyncio=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
|
410 |
+
def _prepare_prompt(self, system, history, gen_conf):
|
411 |
if system:
|
412 |
history.insert(0, {"role": "system", "content": system})
|
413 |
+
if "max_tokens" in gen_conf:
|
414 |
+
gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
|
415 |
+
return Prompt(message=history, gen_conf=gen_conf)
|
416 |
+
|
417 |
+
def _stream_response(self, endpoint, prompt):
|
418 |
answer = ""
|
419 |
try:
|
420 |
+
res = self.client.stream_doc(
|
421 |
+
on=endpoint, inputs=prompt, return_type=Generation
|
422 |
+
)
|
423 |
+
loop = asyncio.get_event_loop()
|
424 |
+
try:
|
425 |
+
while True:
|
426 |
+
answer = loop.run_until_complete(res.__anext__()).text
|
427 |
+
yield answer
|
428 |
+
except StopAsyncIteration:
|
429 |
+
pass
|
430 |
except Exception as e:
|
431 |
yield answer + "\n**ERROR**: " + str(e)
|
432 |
+
yield num_tokens_from_string(answer)
|
433 |
+
|
434 |
+
def chat(self, system, history, gen_conf):
|
435 |
+
prompt = self._prepare_prompt(system, history, gen_conf)
|
436 |
+
chat_gen = self._stream_response("/chat", prompt)
|
437 |
+
ans = next(chat_gen)
|
438 |
+
total_tokens = next(chat_gen)
|
439 |
+
return ans, total_tokens
|
440 |
|
441 |
+
def chat_streamly(self, system, history, gen_conf):
|
442 |
+
prompt = self._prepare_prompt(system, history, gen_conf)
|
443 |
+
return self._stream_response("/stream", prompt)
|
444 |
|
445 |
|
446 |
class VolcEngineChat(Base):
|
rag/svr/jina_server.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from jina import Deployment
|
2 |
+
from docarray import BaseDoc
|
3 |
+
from jina import Executor, requests
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
5 |
+
import argparse
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
class Prompt(BaseDoc):
|
10 |
+
message: list[dict]
|
11 |
+
gen_conf: dict
|
12 |
+
|
13 |
+
|
14 |
+
class Generation(BaseDoc):
|
15 |
+
text: str
|
16 |
+
|
17 |
+
|
18 |
+
tokenizer = None
|
19 |
+
model_name = ""
|
20 |
+
|
21 |
+
|
22 |
+
class TokenStreamingExecutor(Executor):
|
23 |
+
def __init__(self, **kwargs):
|
24 |
+
super().__init__(**kwargs)
|
25 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
model_name, device_map="auto", torch_dtype="auto"
|
27 |
+
)
|
28 |
+
|
29 |
+
@requests(on="/chat")
|
30 |
+
async def generate(self, doc: Prompt, **kwargs) -> Generation:
|
31 |
+
text = tokenizer.apply_chat_template(
|
32 |
+
doc.message,
|
33 |
+
tokenize=False,
|
34 |
+
)
|
35 |
+
inputs = tokenizer([text], return_tensors="pt")
|
36 |
+
generation_config = GenerationConfig(
|
37 |
+
**doc.gen_conf,
|
38 |
+
eos_token_id=tokenizer.eos_token_id,
|
39 |
+
pad_token_id=tokenizer.eos_token_id
|
40 |
+
)
|
41 |
+
generated_ids = self.model.generate(
|
42 |
+
inputs.input_ids, generation_config=generation_config
|
43 |
+
)
|
44 |
+
generated_ids = [
|
45 |
+
output_ids[len(input_ids) :]
|
46 |
+
for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
|
47 |
+
]
|
48 |
+
|
49 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
50 |
+
yield Generation(text=response)
|
51 |
+
|
52 |
+
@requests(on="/stream")
|
53 |
+
async def task(self, doc: Prompt, **kwargs) -> Generation:
|
54 |
+
text = tokenizer.apply_chat_template(
|
55 |
+
doc.message,
|
56 |
+
tokenize=False,
|
57 |
+
)
|
58 |
+
input = tokenizer([text], return_tensors="pt")
|
59 |
+
input_len = input["input_ids"].shape[1]
|
60 |
+
max_new_tokens = 512
|
61 |
+
if "max_new_tokens" in doc.gen_conf:
|
62 |
+
max_new_tokens = doc.gen_conf.pop("max_new_tokens")
|
63 |
+
generation_config = GenerationConfig(
|
64 |
+
**doc.gen_conf,
|
65 |
+
eos_token_id=tokenizer.eos_token_id,
|
66 |
+
pad_token_id=tokenizer.eos_token_id
|
67 |
+
)
|
68 |
+
for _ in range(max_new_tokens):
|
69 |
+
output = self.model.generate(
|
70 |
+
**input, max_new_tokens=1, generation_config=generation_config
|
71 |
+
)
|
72 |
+
if output[0][-1] == tokenizer.eos_token_id:
|
73 |
+
break
|
74 |
+
yield Generation(
|
75 |
+
text=tokenizer.decode(output[0][input_len:], skip_special_tokens=True)
|
76 |
+
)
|
77 |
+
input = {
|
78 |
+
"input_ids": output,
|
79 |
+
"attention_mask": torch.ones(1, len(output[0])),
|
80 |
+
}
|
81 |
+
|
82 |
+
|
83 |
+
if __name__ == "__main__":
|
84 |
+
parser = argparse.ArgumentParser()
|
85 |
+
parser.add_argument("--model_name", type=str, help="Model name or path")
|
86 |
+
parser.add_argument("--port", default=12345, type=int, help="Jina serving port")
|
87 |
+
args = parser.parse_args()
|
88 |
+
model_name = args.model_name
|
89 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
90 |
+
with Deployment(
|
91 |
+
uses=TokenStreamingExecutor, port=args.port, protocol="grpc"
|
92 |
+
) as dep:
|
93 |
+
dep.block()
|