LegalSimilarity / app.py
bikram-riverus's picture
debug
faab731 verified
raw
history blame
741 Bytes
import streamlit as st
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import spacy
nlp = spacy.load("en_core_web_sm")
model = SentenceTransformer("rufimelo/Legal-BERTimbau-sts-base")
def compute_similarity(left_text: str, right_text: str) -> np.ndarray:
print("computing embeddings...")
embeddings = model.encode([left_text, right_text])
print("computing similarity...")
similarity = cosine_similarity(embeddings[: 1], embeddings[1 :])
return similarity
first = st.text_input('First', 'This is a test')
second = st.text_input('Second', 'This is another test')
s = compute_similarity(left_text=first, right_text=second)
st.dataframe(s)