|
import os |
|
|
|
import cv2 |
|
import gradio as gr |
|
import torch |
|
from basicsr.archs.srvgg_arch import SRVGGNetCompact |
|
from realesrgan.utils import RealESRGANer |
|
|
|
from RestoreFormer import RestoreFormer |
|
|
|
os.system("pip freeze") |
|
|
|
if not os.path.exists('realesr-general-x4v3.pth'): |
|
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .") |
|
if not os.path.exists('RestoreFormer.ckpt'): |
|
os.system("wget https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer.ckpt -P .") |
|
if not os.path.exists('RestoreFormer++.ckpt'): |
|
os.system("wget https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer++.ckpt -P .") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') |
|
model_path = 'realesr-general-x4v3.pth' |
|
half = True if torch.cuda.is_available() else False |
|
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) |
|
|
|
os.makedirs('output', exist_ok=True) |
|
|
|
|
|
|
|
def inference(img, version, scale): |
|
|
|
print(img, version, scale) |
|
if scale > 4: |
|
scale = 4 |
|
try: |
|
extension = os.path.splitext(os.path.basename(str(img)))[1] |
|
img = cv2.imread(img, cv2.IMREAD_UNCHANGED) |
|
if len(img.shape) == 3 and img.shape[2] == 4: |
|
img_mode = 'RGBA' |
|
elif len(img.shape) == 2: |
|
img_mode = None |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
else: |
|
img_mode = None |
|
|
|
h, w = img.shape[0:2] |
|
if h > 3500 or w > 3500: |
|
print('too large size') |
|
return None, None |
|
|
|
if h < 300: |
|
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) |
|
|
|
if version == 'RestoreFormer': |
|
face_enhancer = RestoreFormer( |
|
model_path='RestoreFormer.ckpt', upscale=2, arch='RestoreFormer', bg_upsampler=upsampler) |
|
elif version == 'RestoreFormer++': |
|
face_enhancer = RestoreFormer( |
|
model_path='RestoreFormer++.ckpt', upscale=2, arch='RestoreFormer++', bg_upsampler=upsampler) |
|
|
|
try: |
|
|
|
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) |
|
except RuntimeError as error: |
|
print('Error', error) |
|
|
|
try: |
|
if scale != 2: |
|
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 |
|
h, w = img.shape[0:2] |
|
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) |
|
except Exception as error: |
|
print('wrong scale input.', error) |
|
if img_mode == 'RGBA': |
|
extension = 'png' |
|
else: |
|
extension = 'jpg' |
|
save_path = f'output/out.{extension}' |
|
cv2.imwrite(save_path, output) |
|
|
|
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) |
|
return output, save_path |
|
except Exception as error: |
|
print('global exception', error) |
|
return None, None |
|
|
|
|
|
title = "RestoreFormer: Blind Face Restoration Algorithm" |
|
description = r"""Gradio demo for <a href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' target='_blank'><b>RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Paris</b></a>.<br> |
|
It is used to restore your **old photos**.<br> |
|
To use it, simply upload your image.<br> |
|
""" |
|
article = r""" |
|
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/pdf/2308.07228.pdf) |
|
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_RestoreFormer_High-Quality_Blind_Face_Restoration_From_Undegraded_Key-Value_Pairs_CVPR_2022_paper.pdf) |
|
If you have any question, please email 📧 `[email protected]`. |
|
""" |
|
demo = gr.Interface( |
|
inference, [ |
|
gr.Image(type="filepath", label="Input"), |
|
gr.Radio(['RestoreFormer', 'RestoreFormer++'], type="value", value='RestoreFormer++', label='version'), |
|
gr.Number(label="Rescaling factor", value=2), |
|
], [ |
|
gr.Image(type="numpy", label="Output (The whole image)"), |
|
gr.File(label="Download the output image") |
|
], |
|
title=title, |
|
description=description, |
|
article=article, |
|
|
|
|
|
|
|
|
|
) |
|
demo.queue().launch() |