textsummary / app.py
rexthecoder's picture
Update app.py
769a6fc
raw
history blame
651 Bytes
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("mrm8488/flan-t5-small-finetuned-samsum")
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/flan-t5-small-finetuned-samsum")
class Input(BaseModel):
text: str
def predict_sentiment(input: Input, words):
input_ids = tokenizer(input.text, return_tensors="pt").input_ids
outputs = model.generate(input_ids, max_length=words)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
iface = gr.Interface(fn=predict_sentiment, inputs=["text", gr.Slider(0, 100)], outputs="text")
iface.launch()