rexwang8 commited on
Commit
0bc0ba1
·
1 Parent(s): fbc5ac6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -4
app.py CHANGED
@@ -1,4 +1,17 @@
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
2
  import os
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
 
@@ -6,15 +19,14 @@ def GenerateResp(prompt):
6
  model = AutoModelForCausalLM.from_pretrained('rexwang8/qilin-lit-6b')
7
  tokenizer = AutoTokenizer.from_pretrained('rexwang8/qilin-lit-6b')
8
 
9
- #prompt = '''I had eyes but couldn't see Mount Tai!'''
10
-
11
  input_ids = tokenizer.encode(prompt, return_tensors='pt')
12
  output = model.generate(input_ids, do_sample=True, temperature=1.0, top_p=0.9, repetition_penalty=1.2, max_length=len(input_ids[0])+100, pad_token_id=tokenizer.eos_token_id)
13
  generated_text = tokenizer.decode(output[0])
14
  return generated_text
15
-
16
-
17
  inputbox = gr.Textbox(label="Input",lines=3,placeholder='Type anything. The longer the better since it gives Qilin more context. Qilin is trained on english translated eastern (mostly chinese) webnovels.')
18
  outputbox = gr.Textbox(label="Qilin-Lit-6B",lines=8)
19
  iface = gr.Interface(fn=GenerateResp, inputs="text", outputs="text")
20
  iface.launch()
 
 
1
+
2
  import gradio as gr
3
+
4
+ title = "GPT-J-6B"
5
+ description = "GPT-J 6B, a transformer model trained using Ben Wang's Mesh Transformer JAX.'6B' is the number of trainable parameters. Add your text, or click one of the examples to load them."
6
+ article = "<p style='text-align: center'><a href='https://github.com/kingoflolz/mesh-transformer-jax' target='_blank'>GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model</a></p>"
7
+ examples = [
8
+ ['A space ranger encounters a strange silhouette.'],
9
+ ["A day on Saturn is 10 hours and 14 minutes."],
10
+ ["There's no oxygen on Saturn, but roughly 75% hydrogen and 25% helium."]
11
+ ]
12
+ gr.Interface.load("huggingface/rexwang8/qilin-lit-6b", inputs=gr.inputs.Textbox(lines=5, label="Input Text"),title=title,description=description,article=article, examples=examples,enable_queue=True).launch()
13
+
14
+ '''
15
  import os
16
  from transformers import AutoTokenizer, AutoModelForCausalLM
17
 
 
19
  model = AutoModelForCausalLM.from_pretrained('rexwang8/qilin-lit-6b')
20
  tokenizer = AutoTokenizer.from_pretrained('rexwang8/qilin-lit-6b')
21
 
 
 
22
  input_ids = tokenizer.encode(prompt, return_tensors='pt')
23
  output = model.generate(input_ids, do_sample=True, temperature=1.0, top_p=0.9, repetition_penalty=1.2, max_length=len(input_ids[0])+100, pad_token_id=tokenizer.eos_token_id)
24
  generated_text = tokenizer.decode(output[0])
25
  return generated_text
26
+ '''
27
+ '''
28
  inputbox = gr.Textbox(label="Input",lines=3,placeholder='Type anything. The longer the better since it gives Qilin more context. Qilin is trained on english translated eastern (mostly chinese) webnovels.')
29
  outputbox = gr.Textbox(label="Qilin-Lit-6B",lines=8)
30
  iface = gr.Interface(fn=GenerateResp, inputs="text", outputs="text")
31
  iface.launch()
32
+ '''