Spaces:
Build error
Build error
File size: 12,233 Bytes
84d2a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
use std::marker::PhantomData;
use std::path::Path;
use common::counter::hardware_counter::HardwareCounterCell;
use serde::{Deserialize, Serialize};
use crate::encoded_vectors::validate_vector_parameters;
use crate::utils::{transmute_from_u8_to_slice, transmute_to_u8_slice};
use crate::{
DistanceType, EncodedStorage, EncodedStorageBuilder, EncodedVectors, EncodingError,
VectorParameters,
};
pub struct EncodedVectorsBin<TBitsStoreType: BitsStoreType, TStorage: EncodedStorage> {
encoded_vectors: TStorage,
metadata: Metadata,
bits_store_type: PhantomData<TBitsStoreType>,
}
pub struct EncodedBinVector<TBitsStoreType: BitsStoreType> {
encoded_vector: Vec<TBitsStoreType>,
}
#[derive(Serialize, Deserialize)]
struct Metadata {
vector_parameters: VectorParameters,
}
pub trait BitsStoreType:
Default
+ Copy
+ Clone
+ core::ops::BitOrAssign
+ std::ops::Shl<usize, Output = Self>
+ num_traits::identities::One
{
/// Xor vectors and return the number of bits set to 1
///
/// Assume that `v1` and `v2` are aligned to `BITS_STORE_TYPE_SIZE` with both with zeros
/// So it does not affect the resulting number of bits set to 1
fn xor_popcnt(v1: &[Self], v2: &[Self]) -> usize;
/// Estimates how many `StorageType` elements are needed to store `size` bits
fn get_storage_size(size: usize) -> usize;
}
impl BitsStoreType for u8 {
fn xor_popcnt(v1: &[Self], v2: &[Self]) -> usize {
debug_assert!(v1.len() == v2.len());
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
if is_x86_feature_detected!("sse4.2") {
unsafe {
if v1.len() > 16 {
return impl_xor_popcnt_sse_uint128(
v1.as_ptr(),
v2.as_ptr(),
(v1.len() as u32) / 16,
) as usize;
} else if v1.len() > 8 {
return impl_xor_popcnt_sse_uint64(
v1.as_ptr(),
v2.as_ptr(),
(v1.len() as u32) / 8,
) as usize;
} else if v1.len() > 4 {
return impl_xor_popcnt_sse_uint32(
v1.as_ptr(),
v2.as_ptr(),
(v1.len() as u32) / 4,
) as usize;
}
}
}
#[cfg(all(target_arch = "aarch64", target_feature = "neon"))]
if std::arch::is_aarch64_feature_detected!("neon") {
unsafe {
if v1.len() > 16 {
return impl_xor_popcnt_neon_uint128(
v1.as_ptr(),
v2.as_ptr(),
(v1.len() as u32) / 16,
) as usize;
} else if v1.len() > 8 {
return impl_xor_popcnt_neon_uint64(
v1.as_ptr(),
v2.as_ptr(),
(v1.len() as u32) / 8,
) as usize;
}
}
}
let mut result = 0;
for (&b1, &b2) in v1.iter().zip(v2.iter()) {
result += (b1 ^ b2).count_ones() as usize;
}
result
}
fn get_storage_size(size: usize) -> usize {
let bytes_count = if size > 128 {
std::mem::size_of::<u128>()
} else if size > 64 {
std::mem::size_of::<u64>()
} else if size > 32 {
std::mem::size_of::<u32>()
} else {
std::mem::size_of::<u8>()
};
let bits_count = u8::BITS as usize * bytes_count;
let mut result = size / bits_count;
if size % bits_count != 0 {
result += 1;
}
result * bytes_count
}
}
impl BitsStoreType for u128 {
fn xor_popcnt(v1: &[Self], v2: &[Self]) -> usize {
debug_assert!(v1.len() == v2.len());
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
if is_x86_feature_detected!("sse4.2") {
unsafe {
return impl_xor_popcnt_sse_uint128(
v1.as_ptr().cast::<u8>(),
v2.as_ptr().cast::<u8>(),
v1.len() as u32,
) as usize;
}
}
#[cfg(all(target_arch = "aarch64", target_feature = "neon"))]
if std::arch::is_aarch64_feature_detected!("neon") {
unsafe {
return impl_xor_popcnt_neon_uint128(
v1.as_ptr().cast::<u8>(),
v2.as_ptr().cast::<u8>(),
v1.len() as u32,
) as usize;
}
}
let mut result = 0;
for (&b1, &b2) in v1.iter().zip(v2.iter()) {
result += (b1 ^ b2).count_ones() as usize;
}
result
}
fn get_storage_size(size: usize) -> usize {
let bits_count = 8 * std::mem::size_of::<Self>();
let mut result = size / bits_count;
if size % bits_count != 0 {
result += 1;
}
result
}
}
impl<TBitsStoreType: BitsStoreType, TStorage: EncodedStorage>
EncodedVectorsBin<TBitsStoreType, TStorage>
{
pub fn encode<'a>(
orig_data: impl Iterator<Item = impl AsRef<[f32]> + 'a> + Clone,
mut storage_builder: impl EncodedStorageBuilder<TStorage>,
vector_parameters: &VectorParameters,
stop_condition: impl Fn() -> bool,
) -> Result<Self, EncodingError> {
debug_assert!(validate_vector_parameters(orig_data.clone(), vector_parameters).is_ok());
for vector in orig_data {
if stop_condition() {
return Err(EncodingError::Stopped);
}
let encoded_vector = Self::encode_vector(vector.as_ref());
let encoded_vector_slice = encoded_vector.encoded_vector.as_slice();
let bytes = transmute_to_u8_slice(encoded_vector_slice);
storage_builder.push_vector_data(bytes);
}
Ok(Self {
encoded_vectors: storage_builder.build(),
metadata: Metadata {
vector_parameters: vector_parameters.clone(),
},
bits_store_type: PhantomData,
})
}
fn encode_vector(vector: &[f32]) -> EncodedBinVector<TBitsStoreType> {
let mut encoded_vector =
vec![Default::default(); TBitsStoreType::get_storage_size(vector.len())];
let bits_count = u8::BITS as usize * std::mem::size_of::<TBitsStoreType>();
let one = TBitsStoreType::one();
for (i, &v) in vector.iter().enumerate() {
// flag is true if the value is positive
// It's expected that the vector value is in range [-1; 1]
if v > 0.0 {
encoded_vector[i / bits_count] |= one << (i % bits_count);
}
}
EncodedBinVector { encoded_vector }
}
pub fn get_quantized_vector_size_from_params(vector_parameters: &VectorParameters) -> usize {
TBitsStoreType::get_storage_size(vector_parameters.dim)
* std::mem::size_of::<TBitsStoreType>()
}
fn get_quantized_vector_size(&self) -> usize {
Self::get_quantized_vector_size_from_params(&self.metadata.vector_parameters)
}
fn calculate_metric(&self, v1: &[TBitsStoreType], v2: &[TBitsStoreType]) -> f32 {
// Dot product in a range [-1; 1] is approximated by NXOR in a range [0; 1]
// L1 distance in range [-1; 1] (alpha=2) is approximated by alpha*XOR in a range [0; 1]
// L2 distance in range [-1; 1] (alpha=2) is approximated by alpha*sqrt(XOR) in a range [0; 1]
// For example:
// | A | B | Dot product | L1 | L2 |
// | -0.5 | -0.5 | 0.25 | 0 | 0 |
// | -0.5 | 0.5 | -0.25 | 1 | 1 |
// | 0.5 | -0.5 | -0.25 | 1 | 1 |
// | 0.5 | 0.5 | 0.25 | 0 | 0 |
// | A | B | NXOR | XOR
// | 0 | 0 | 1 | 0
// | 0 | 1 | 0 | 1
// | 1 | 0 | 0 | 1
// | 1 | 1 | 1 | 0
let xor_product = TBitsStoreType::xor_popcnt(v1, v2) as f32;
let dim = self.metadata.vector_parameters.dim as f32;
let zeros_count = dim - xor_product;
match (
self.metadata.vector_parameters.distance_type,
self.metadata.vector_parameters.invert,
) {
// So if `invert` is true we return XOR, otherwise we return (dim - XOR)
(DistanceType::Dot, true) => xor_product - zeros_count,
(DistanceType::Dot, false) => zeros_count - xor_product,
// This also results in exact ordering as L1 and L2 but reversed.
(DistanceType::L1 | DistanceType::L2, true) => zeros_count - xor_product,
(DistanceType::L1 | DistanceType::L2, false) => xor_product - zeros_count,
}
}
}
impl<TBitsStoreType: BitsStoreType, TStorage: EncodedStorage>
EncodedVectors<EncodedBinVector<TBitsStoreType>>
for EncodedVectorsBin<TBitsStoreType, TStorage>
{
fn save(&self, data_path: &Path, meta_path: &Path) -> std::io::Result<()> {
let metadata_bytes = serde_json::to_vec(&self.metadata)?;
meta_path.parent().map(std::fs::create_dir_all);
std::fs::write(meta_path, metadata_bytes)?;
data_path.parent().map(std::fs::create_dir_all);
self.encoded_vectors.save_to_file(data_path)?;
Ok(())
}
fn load(
data_path: &Path,
meta_path: &Path,
vector_parameters: &VectorParameters,
) -> std::io::Result<Self> {
let contents = std::fs::read_to_string(meta_path)?;
let metadata: Metadata = serde_json::from_str(&contents)?;
let quantized_vector_size = Self::get_quantized_vector_size_from_params(vector_parameters);
let encoded_vectors =
TStorage::from_file(data_path, quantized_vector_size, vector_parameters.count)?;
let result = Self {
metadata,
encoded_vectors,
bits_store_type: PhantomData,
};
Ok(result)
}
fn encode_query(&self, query: &[f32]) -> EncodedBinVector<TBitsStoreType> {
debug_assert!(query.len() == self.metadata.vector_parameters.dim);
Self::encode_vector(query)
}
fn score_point(
&self,
query: &EncodedBinVector<TBitsStoreType>,
i: u32,
hw_counter: &HardwareCounterCell,
) -> f32 {
let vector_data_1 = self
.encoded_vectors
.get_vector_data(i as _, self.get_quantized_vector_size());
let vector_data_usize_1 = transmute_from_u8_to_slice(vector_data_1);
hw_counter
.cpu_counter()
.incr_delta(query.encoded_vector.len());
self.calculate_metric(vector_data_usize_1, &query.encoded_vector)
}
fn score_internal(&self, i: u32, j: u32, hw_counter: &HardwareCounterCell) -> f32 {
let vector_data_1 = self
.encoded_vectors
.get_vector_data(i as _, self.get_quantized_vector_size());
let vector_data_2 = self
.encoded_vectors
.get_vector_data(j as _, self.get_quantized_vector_size());
let vector_data_usize_1 = transmute_from_u8_to_slice(vector_data_1);
let vector_data_usize_2 = transmute_from_u8_to_slice(vector_data_2);
hw_counter
.cpu_counter()
.incr_delta(vector_data_usize_2.len());
self.calculate_metric(vector_data_usize_1, vector_data_usize_2)
}
}
#[cfg(target_arch = "x86_64")]
extern "C" {
fn impl_xor_popcnt_sse_uint128(query_ptr: *const u8, vector_ptr: *const u8, count: u32) -> u32;
fn impl_xor_popcnt_sse_uint64(query_ptr: *const u8, vector_ptr: *const u8, count: u32) -> u32;
fn impl_xor_popcnt_sse_uint32(query_ptr: *const u8, vector_ptr: *const u8, count: u32) -> u32;
}
#[cfg(all(target_arch = "aarch64", target_feature = "neon"))]
extern "C" {
fn impl_xor_popcnt_neon_uint128(query_ptr: *const u8, vector_ptr: *const u8, count: u32)
-> u32;
fn impl_xor_popcnt_neon_uint64(query_ptr: *const u8, vector_ptr: *const u8, count: u32) -> u32;
}
|