File size: 12,233 Bytes
84d2a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
use std::marker::PhantomData;
use std::path::Path;

use common::counter::hardware_counter::HardwareCounterCell;
use serde::{Deserialize, Serialize};

use crate::encoded_vectors::validate_vector_parameters;
use crate::utils::{transmute_from_u8_to_slice, transmute_to_u8_slice};
use crate::{
    DistanceType, EncodedStorage, EncodedStorageBuilder, EncodedVectors, EncodingError,
    VectorParameters,
};

pub struct EncodedVectorsBin<TBitsStoreType: BitsStoreType, TStorage: EncodedStorage> {
    encoded_vectors: TStorage,
    metadata: Metadata,
    bits_store_type: PhantomData<TBitsStoreType>,
}

pub struct EncodedBinVector<TBitsStoreType: BitsStoreType> {
    encoded_vector: Vec<TBitsStoreType>,
}

#[derive(Serialize, Deserialize)]
struct Metadata {
    vector_parameters: VectorParameters,
}

pub trait BitsStoreType:
    Default
    + Copy
    + Clone
    + core::ops::BitOrAssign
    + std::ops::Shl<usize, Output = Self>
    + num_traits::identities::One
{
    /// Xor vectors and return the number of bits set to 1
    ///
    /// Assume that `v1` and `v2` are aligned to `BITS_STORE_TYPE_SIZE` with both with zeros
    /// So it does not affect the resulting number of bits set to 1
    fn xor_popcnt(v1: &[Self], v2: &[Self]) -> usize;

    /// Estimates how many `StorageType` elements are needed to store `size` bits
    fn get_storage_size(size: usize) -> usize;
}

impl BitsStoreType for u8 {
    fn xor_popcnt(v1: &[Self], v2: &[Self]) -> usize {
        debug_assert!(v1.len() == v2.len());

        #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
        if is_x86_feature_detected!("sse4.2") {
            unsafe {
                if v1.len() > 16 {
                    return impl_xor_popcnt_sse_uint128(
                        v1.as_ptr(),
                        v2.as_ptr(),
                        (v1.len() as u32) / 16,
                    ) as usize;
                } else if v1.len() > 8 {
                    return impl_xor_popcnt_sse_uint64(
                        v1.as_ptr(),
                        v2.as_ptr(),
                        (v1.len() as u32) / 8,
                    ) as usize;
                } else if v1.len() > 4 {
                    return impl_xor_popcnt_sse_uint32(
                        v1.as_ptr(),
                        v2.as_ptr(),
                        (v1.len() as u32) / 4,
                    ) as usize;
                }
            }
        }

        #[cfg(all(target_arch = "aarch64", target_feature = "neon"))]
        if std::arch::is_aarch64_feature_detected!("neon") {
            unsafe {
                if v1.len() > 16 {
                    return impl_xor_popcnt_neon_uint128(
                        v1.as_ptr(),
                        v2.as_ptr(),
                        (v1.len() as u32) / 16,
                    ) as usize;
                } else if v1.len() > 8 {
                    return impl_xor_popcnt_neon_uint64(
                        v1.as_ptr(),
                        v2.as_ptr(),
                        (v1.len() as u32) / 8,
                    ) as usize;
                }
            }
        }

        let mut result = 0;
        for (&b1, &b2) in v1.iter().zip(v2.iter()) {
            result += (b1 ^ b2).count_ones() as usize;
        }
        result
    }

    fn get_storage_size(size: usize) -> usize {
        let bytes_count = if size > 128 {
            std::mem::size_of::<u128>()
        } else if size > 64 {
            std::mem::size_of::<u64>()
        } else if size > 32 {
            std::mem::size_of::<u32>()
        } else {
            std::mem::size_of::<u8>()
        };

        let bits_count = u8::BITS as usize * bytes_count;
        let mut result = size / bits_count;
        if size % bits_count != 0 {
            result += 1;
        }
        result * bytes_count
    }
}

impl BitsStoreType for u128 {
    fn xor_popcnt(v1: &[Self], v2: &[Self]) -> usize {
        debug_assert!(v1.len() == v2.len());

        #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
        if is_x86_feature_detected!("sse4.2") {
            unsafe {
                return impl_xor_popcnt_sse_uint128(
                    v1.as_ptr().cast::<u8>(),
                    v2.as_ptr().cast::<u8>(),
                    v1.len() as u32,
                ) as usize;
            }
        }

        #[cfg(all(target_arch = "aarch64", target_feature = "neon"))]
        if std::arch::is_aarch64_feature_detected!("neon") {
            unsafe {
                return impl_xor_popcnt_neon_uint128(
                    v1.as_ptr().cast::<u8>(),
                    v2.as_ptr().cast::<u8>(),
                    v1.len() as u32,
                ) as usize;
            }
        }

        let mut result = 0;
        for (&b1, &b2) in v1.iter().zip(v2.iter()) {
            result += (b1 ^ b2).count_ones() as usize;
        }
        result
    }

    fn get_storage_size(size: usize) -> usize {
        let bits_count = 8 * std::mem::size_of::<Self>();
        let mut result = size / bits_count;
        if size % bits_count != 0 {
            result += 1;
        }
        result
    }
}

impl<TBitsStoreType: BitsStoreType, TStorage: EncodedStorage>
    EncodedVectorsBin<TBitsStoreType, TStorage>
{
    pub fn encode<'a>(
        orig_data: impl Iterator<Item = impl AsRef<[f32]> + 'a> + Clone,
        mut storage_builder: impl EncodedStorageBuilder<TStorage>,
        vector_parameters: &VectorParameters,
        stop_condition: impl Fn() -> bool,
    ) -> Result<Self, EncodingError> {
        debug_assert!(validate_vector_parameters(orig_data.clone(), vector_parameters).is_ok());

        for vector in orig_data {
            if stop_condition() {
                return Err(EncodingError::Stopped);
            }

            let encoded_vector = Self::encode_vector(vector.as_ref());
            let encoded_vector_slice = encoded_vector.encoded_vector.as_slice();
            let bytes = transmute_to_u8_slice(encoded_vector_slice);
            storage_builder.push_vector_data(bytes);
        }

        Ok(Self {
            encoded_vectors: storage_builder.build(),
            metadata: Metadata {
                vector_parameters: vector_parameters.clone(),
            },
            bits_store_type: PhantomData,
        })
    }

    fn encode_vector(vector: &[f32]) -> EncodedBinVector<TBitsStoreType> {
        let mut encoded_vector =
            vec![Default::default(); TBitsStoreType::get_storage_size(vector.len())];

        let bits_count = u8::BITS as usize * std::mem::size_of::<TBitsStoreType>();
        let one = TBitsStoreType::one();
        for (i, &v) in vector.iter().enumerate() {
            // flag is true if the value is positive
            // It's expected that the vector value is in range [-1; 1]
            if v > 0.0 {
                encoded_vector[i / bits_count] |= one << (i % bits_count);
            }
        }

        EncodedBinVector { encoded_vector }
    }

    pub fn get_quantized_vector_size_from_params(vector_parameters: &VectorParameters) -> usize {
        TBitsStoreType::get_storage_size(vector_parameters.dim)
            * std::mem::size_of::<TBitsStoreType>()
    }

    fn get_quantized_vector_size(&self) -> usize {
        Self::get_quantized_vector_size_from_params(&self.metadata.vector_parameters)
    }

    fn calculate_metric(&self, v1: &[TBitsStoreType], v2: &[TBitsStoreType]) -> f32 {
        // Dot product in a range [-1; 1] is approximated by NXOR in a range [0; 1]
        // L1 distance in range [-1; 1] (alpha=2) is approximated by alpha*XOR in a range [0; 1]
        // L2 distance in range [-1; 1] (alpha=2) is approximated by alpha*sqrt(XOR) in a range [0; 1]
        // For example:

        // |  A   |  B   | Dot product | L1 | L2 |
        // | -0.5 | -0.5 |  0.25       | 0  | 0  |
        // | -0.5 |  0.5 | -0.25       | 1  | 1  |
        // |  0.5 | -0.5 | -0.25       | 1  | 1  |
        // |  0.5 |  0.5 |  0.25       | 0  | 0  |

        // | A | B | NXOR | XOR
        // | 0 | 0 | 1    | 0
        // | 0 | 1 | 0    | 1
        // | 1 | 0 | 0    | 1
        // | 1 | 1 | 1    | 0

        let xor_product = TBitsStoreType::xor_popcnt(v1, v2) as f32;

        let dim = self.metadata.vector_parameters.dim as f32;
        let zeros_count = dim - xor_product;

        match (
            self.metadata.vector_parameters.distance_type,
            self.metadata.vector_parameters.invert,
        ) {
            // So if `invert` is true we return XOR, otherwise we return (dim - XOR)
            (DistanceType::Dot, true) => xor_product - zeros_count,
            (DistanceType::Dot, false) => zeros_count - xor_product,
            // This also results in exact ordering as L1 and L2 but reversed.
            (DistanceType::L1 | DistanceType::L2, true) => zeros_count - xor_product,
            (DistanceType::L1 | DistanceType::L2, false) => xor_product - zeros_count,
        }
    }
}

impl<TBitsStoreType: BitsStoreType, TStorage: EncodedStorage>
    EncodedVectors<EncodedBinVector<TBitsStoreType>>
    for EncodedVectorsBin<TBitsStoreType, TStorage>
{
    fn save(&self, data_path: &Path, meta_path: &Path) -> std::io::Result<()> {
        let metadata_bytes = serde_json::to_vec(&self.metadata)?;
        meta_path.parent().map(std::fs::create_dir_all);
        std::fs::write(meta_path, metadata_bytes)?;

        data_path.parent().map(std::fs::create_dir_all);
        self.encoded_vectors.save_to_file(data_path)?;
        Ok(())
    }

    fn load(
        data_path: &Path,
        meta_path: &Path,
        vector_parameters: &VectorParameters,
    ) -> std::io::Result<Self> {
        let contents = std::fs::read_to_string(meta_path)?;
        let metadata: Metadata = serde_json::from_str(&contents)?;
        let quantized_vector_size = Self::get_quantized_vector_size_from_params(vector_parameters);
        let encoded_vectors =
            TStorage::from_file(data_path, quantized_vector_size, vector_parameters.count)?;
        let result = Self {
            metadata,
            encoded_vectors,
            bits_store_type: PhantomData,
        };
        Ok(result)
    }

    fn encode_query(&self, query: &[f32]) -> EncodedBinVector<TBitsStoreType> {
        debug_assert!(query.len() == self.metadata.vector_parameters.dim);
        Self::encode_vector(query)
    }

    fn score_point(
        &self,
        query: &EncodedBinVector<TBitsStoreType>,
        i: u32,
        hw_counter: &HardwareCounterCell,
    ) -> f32 {
        let vector_data_1 = self
            .encoded_vectors
            .get_vector_data(i as _, self.get_quantized_vector_size());
        let vector_data_usize_1 = transmute_from_u8_to_slice(vector_data_1);

        hw_counter
            .cpu_counter()
            .incr_delta(query.encoded_vector.len());

        self.calculate_metric(vector_data_usize_1, &query.encoded_vector)
    }

    fn score_internal(&self, i: u32, j: u32, hw_counter: &HardwareCounterCell) -> f32 {
        let vector_data_1 = self
            .encoded_vectors
            .get_vector_data(i as _, self.get_quantized_vector_size());
        let vector_data_2 = self
            .encoded_vectors
            .get_vector_data(j as _, self.get_quantized_vector_size());

        let vector_data_usize_1 = transmute_from_u8_to_slice(vector_data_1);
        let vector_data_usize_2 = transmute_from_u8_to_slice(vector_data_2);

        hw_counter
            .cpu_counter()
            .incr_delta(vector_data_usize_2.len());

        self.calculate_metric(vector_data_usize_1, vector_data_usize_2)
    }
}

#[cfg(target_arch = "x86_64")]
extern "C" {
    fn impl_xor_popcnt_sse_uint128(query_ptr: *const u8, vector_ptr: *const u8, count: u32) -> u32;

    fn impl_xor_popcnt_sse_uint64(query_ptr: *const u8, vector_ptr: *const u8, count: u32) -> u32;

    fn impl_xor_popcnt_sse_uint32(query_ptr: *const u8, vector_ptr: *const u8, count: u32) -> u32;
}

#[cfg(all(target_arch = "aarch64", target_feature = "neon"))]
extern "C" {
    fn impl_xor_popcnt_neon_uint128(query_ptr: *const u8, vector_ptr: *const u8, count: u32)
        -> u32;

    fn impl_xor_popcnt_neon_uint64(query_ptr: *const u8, vector_ptr: *const u8, count: u32) -> u32;
}