File size: 5,376 Bytes
2fdbd5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Quick Start

This example covers the most basic use-case - collection creation and basic vector search.
For additional information please refer to the [API documentation](https://api.qdrant.tech/).

## Docker 🐳

Use latest pre-built image from [DockerHub](https://hub.docker.com/r/qdrant/qdrant)

```bash
docker pull qdrant/qdrant
```

Run it with default configuration:

```bash
docker run -p 6333:6333 qdrant/qdrant
```

Build your own from source

```bash
docker build . --tag=qdrant/qdrant
```

And once you need a fine-grained setup, you can also define a storage path and custom configuration:

```bash
docker run -p 6333:6333 \
    -v $(pwd)/path/to/data:/qdrant/storage \
    -v $(pwd)/path/to/snapshots:/qdrant/snapshots \
    -v $(pwd)/path/to/custom_config.yaml:/qdrant/config/production.yaml \
    qdrant/qdrant
```

- `/qdrant/storage` - is the place where Qdrant persists all your data.
  Make sure to mount it as a volume, otherwise docker will drop it with the container.
- `/qdrant/snapshots` - is the place where Qdrant stores [snapshots](https://qdrant.tech/documentation/concepts/snapshots/)
- `/qdrant/config/production.yaml` - is the file with engine configuration. You can override any value from the [reference config](https://github.com/qdrant/qdrant/blob/master/config/config.yaml). In a real production environment, you should enable authentication by setting `service.apiKey`.
- For production environments, consider also setting [`--read-only`](https://docs.docker.com/reference/cli/docker/container/run/#read-only) and `--user=1000:2000` to further secure your Qdrant instance. Or use [our Helm chart](https://github.com/qdrant/qdrant-helm) or [Qdrant Cloud](https://qdrant.tech/documentation/cloud/) which sets these by default.

Now Qdrant should be accessible at [localhost:6333](http://localhost:6333/).

## Create collection

First - let's create a collection with dot-production metric.

```bash
curl -X PUT 'http://localhost:6333/collections/test_collection' \
    -H 'Content-Type: application/json' \
    --data-raw '{
        "vectors": {
          "size": 4,
          "distance": "Dot"
        }
    }'
```

Expected response:

```json
{
  "result": true,
  "status": "ok",
  "time": 0.031095451
}
```

We can ensure that collection was created:

```bash
curl 'http://localhost:6333/collections/test_collection'
```

Expected response:

```json
{
  "result": {
    "status": "green",
    "vectors_count": 0,
    "segments_count": 5,
    "disk_data_size": 0,
    "ram_data_size": 0,
    "config": {
      "params": {
        "vectors": {
          "size": 4,
          "distance": "Dot"
        }
      },
      "hnsw_config": {
        "m": 16,
        "ef_construct": 100,
        "full_scan_threshold": 10000
      },
      "optimizer_config": {
        "deleted_threshold": 0.2,
        "vacuum_min_vector_number": 1000,
        "default_segment_number": 2,
        "max_segment_size": null,
        "memmap_threshold": null,
        "indexing_threshold": 20000,
        "flush_interval_sec": 5,
        "max_optimization_threads": null
      },
      "wal_config": {
        "wal_capacity_mb": 32,
        "wal_segments_ahead": 0
      }
    }
  },
  "status": "ok",
  "time": 2.1199e-5
}
```

## Add points

Let's now add vectors with some payload:

```bash
curl -L -X PUT 'http://localhost:6333/collections/test_collection/points?wait=true' \
    -H 'Content-Type: application/json' \
    --data-raw '{
        "points": [
          {"id": 1, "vector": [0.05, 0.61, 0.76, 0.74], "payload": {"city": "Berlin"}},
          {"id": 2, "vector": [0.19, 0.81, 0.75, 0.11], "payload": {"city": ["Berlin", "London"] }},
          {"id": 3, "vector": [0.36, 0.55, 0.47, 0.94], "payload": {"city": ["Berlin", "Moscow"] }},
          {"id": 4, "vector": [0.18, 0.01, 0.85, 0.80], "payload": {"city": ["London", "Moscow"] }},
          {"id": 5, "vector": [0.24, 0.18, 0.22, 0.44], "payload": {"count": [0] }},
          {"id": 6, "vector": [0.35, 0.08, 0.11, 0.44]}
        ]
    }'
```

Expected response:

```json
{
  "result": {
    "operation_id": 0,
    "status": "completed"
  },
  "status": "ok",
  "time": 0.000206061
}
```

## Search with filtering

Let's start with a basic request:

```bash
curl -L -X POST 'http://localhost:6333/collections/test_collection/points/search' \
    -H 'Content-Type: application/json' \
    --data-raw '{
        "vector": [0.2,0.1,0.9,0.7],
        "top": 3
    }'
```

Expected response:

```json
{
  "result": [
    { "id": 4, "score": 1.362, "payload": null, "version": 0 },
    { "id": 1, "score": 1.273, "payload": null, "version": 0 },
    { "id": 3, "score": 1.208, "payload": null, "version": 0 }
  ],
  "status": "ok",
  "time": 0.000055785
}
```

But result is different if we add a filter:

```bash
curl -L -X POST 'http://localhost:6333/collections/test_collection/points/search' \
    -H 'Content-Type: application/json' \
    --data-raw '{
      "filter": {
          "should": [
              {
                  "key": "city",
                  "match": {
                      "value": "London"
                  }
              }
          ]
      },
      "vector": [0.2, 0.1, 0.9, 0.7],
      "top": 3
  }'
```

Expected response:

```json
{
  "result": [
    { "id": 4, "score": 1.362 },
    { "id": 2, "score": 0.871 }
  ],
  "status": "ok",
  "time": 0.000093972
}
```