File size: 7,183 Bytes
84d2a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
use std::collections::HashMap;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;
use std::time::{Duration, Instant};

use rand::Rng;

#[derive(Debug)]
struct ItemWithStats<T: Clone> {
    pub item: T,
    pub usage: AtomicUsize,
    pub last_success: AtomicUsize,
}

impl<T: Clone> ItemWithStats<T> {
    fn new(item: T, last_used_since: usize) -> Self {
        Self {
            item,
            usage: AtomicUsize::new(0),
            last_success: AtomicUsize::new(last_used_since),
        }
    }
}

pub struct DynamicPool<T: Clone> {
    items: HashMap<u64, Arc<ItemWithStats<T>>>,
    /// How many times one item can be used
    max_usage_per_item: usize,
    /// Minimal number of items in the pool
    min_items: usize,
    /// Instant when the pool was created
    init_at: Instant,
}

pub struct CountedItem<T: Clone> {
    item: Arc<ItemWithStats<T>>,
    item_id: u64,
    init_at: Instant,
}

impl<T: Clone> CountedItem<T> {
    fn new(item_id: u64, item: Arc<ItemWithStats<T>>, init_at: Instant) -> Self {
        item.usage.fetch_add(1, Ordering::Relaxed);
        Self {
            item,
            item_id,
            init_at,
        }
    }

    pub fn item(&self) -> &T {
        &self.item.item
    }

    pub fn report_success(&self) {
        let time_since_init = Instant::now().duration_since(self.init_at).as_millis() as usize;
        self.item
            .last_success
            .store(time_since_init, Ordering::Relaxed);
    }

    pub fn last_success_age(&self) -> Duration {
        let time_since_init = Instant::now().duration_since(self.init_at).as_millis() as usize;
        let time_since_last_success = self.item.last_success.load(Ordering::Relaxed);
        Duration::from_millis((time_since_init - time_since_last_success) as u64)
    }
}

impl<T: Clone> Drop for CountedItem<T> {
    fn drop(&mut self) {
        self.item.usage.fetch_sub(1, Ordering::Relaxed);
    }
}

impl<T: Clone> DynamicPool<T> {
    fn random_idx() -> u64 {
        rand::thread_rng().gen()
    }

    pub fn new(items: Vec<T>, max_usage_per_item: usize, min_items: usize) -> Self {
        debug_assert!(max_usage_per_item > 0);
        debug_assert!(items.len() >= min_items);
        let init_at = Instant::now();
        let last_success_since = Instant::now().duration_since(init_at).as_millis() as usize;
        let items = items
            .into_iter()
            .map(|item| {
                let item = Arc::new(ItemWithStats::new(item, last_success_since));
                (Self::random_idx(), item)
            })
            .collect();
        Self {
            items,
            max_usage_per_item,
            min_items,
            init_at,
        }
    }

    pub fn drop_item(&mut self, item: CountedItem<T>) {
        let item_id = item.item_id;
        self.items.remove(&item_id);
    }

    pub fn add(&mut self, item: T) -> CountedItem<T> {
        let item_with_stats = Arc::new(ItemWithStats::new(
            item,
            Instant::now().duration_since(self.init_at).as_millis() as usize,
        ));
        let item_id = Self::random_idx();
        self.items.insert(item_id, item_with_stats.clone());
        CountedItem::new(item_id, item_with_stats, self.init_at)
    }

    // Returns None if current capacity is not enough
    pub fn choose(&mut self) -> Option<CountedItem<T>> {
        if self.items.len() < self.min_items {
            return None;
        }

        // If all items are used too much, we cannot use any of them so we return None
        let mut total_usage = 0;
        let min_usage_idx = *self
            .items
            .iter()
            .map(|(idx, item)| {
                let usage = item.usage.load(Ordering::Relaxed);
                total_usage += usage;
                (idx, usage)
            })
            .filter(|(_, min_usage)| *min_usage < self.max_usage_per_item)
            .min_by_key(|(_, usage)| *usage)?
            .0;

        let current_usage_capacity = self.items.len().saturating_mul(self.max_usage_per_item);

        if current_usage_capacity.saturating_sub(total_usage)
            > self.max_usage_per_item.saturating_mul(2)
            && self.items.len() > self.min_items
        {
            // We have too many items, and we have enough capacity to remove some of them
            let item = self
                .items
                .remove(&min_usage_idx)
                .expect("Item must exist, as we just found it");
            return Some(CountedItem::new(min_usage_idx, item, self.init_at));
        }

        Some(CountedItem::new(
            min_usage_idx,
            self.items
                .get(&min_usage_idx)
                .expect("Item must exist, as we just found it")
                .clone(),
            self.init_at,
        ))
    }
}

#[cfg(test)]
mod tests {
    use std::sync::atomic::{AtomicUsize, Ordering};

    use super::*;

    async fn use_item(item: CountedItem<Arc<AtomicUsize>>) {
        item.item().fetch_add(1, Ordering::SeqCst);
        // Sleep for 1-100 ms
        tokio::time::sleep(std::time::Duration::from_millis(
            rand::random::<u64>() % 100 + 1,
        ))
        .await;
        item.item().fetch_sub(1, Ordering::SeqCst);
        item.report_success();
        drop(item);
    }

    #[test]
    fn test_dynamic_pool() {
        let items = vec![Arc::new(AtomicUsize::new(0)), Arc::new(AtomicUsize::new(0))];

        let mut pool = DynamicPool::new(items, 5, 2);

        let mut items = vec![];

        for _ in 0..17 {
            let item = match pool.choose() {
                None => pool.add(Arc::new(AtomicUsize::new(0))),
                Some(it) => it,
            };

            item.item().fetch_add(1, Ordering::SeqCst);
            items.push(item);
        }

        assert_eq!(pool.items.len(), 4);

        for _ in 0..10 {
            items.pop();
        }

        for (idx, item) in pool.items.iter() {
            println!("{idx} -> {item:?}");
        }

        assert!(pool.choose().is_some());

        assert_eq!(pool.items.len(), 3);
    }

    #[test]
    fn test_dynamic_pool_with_runtime() {
        let items = vec![Arc::new(AtomicUsize::new(0)), Arc::new(AtomicUsize::new(0))];

        let runtime = tokio::runtime::Runtime::new().unwrap();

        let mut pool = DynamicPool::new(items, 5, 2);

        let mut handles = vec![];
        for _ in 0..1000 {
            let item = match pool.choose() {
                None => pool.add(Arc::new(AtomicUsize::new(0))),
                Some(it) => it,
            };

            let handle = runtime.spawn(async move { use_item(item).await });

            handles.push(handle);

            // Sleep for 3 ms with std
            std::thread::sleep(std::time::Duration::from_millis(2));
        }
        runtime.block_on(async move {
            for handle in handles {
                handle.await.unwrap();
            }
        });

        pool.items.iter().for_each(|(_, item)| {
            assert_eq!(item.item.load(Ordering::SeqCst), 0);
            assert_eq!(item.usage.load(Ordering::SeqCst), 0);
        });

        assert!(pool.items.len() < 50);
    }
}