File size: 34,350 Bytes
84d2a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
use std::collections::HashMap;
use std::hash::{Hash, Hasher};

use common::types::ScoreType;
use common::validation::validate_multi_vector;
use schemars::JsonSchema;
use segment::common::utils::MaybeOneOrMany;
use segment::data_types::order_by::OrderBy;
use segment::json_path::JsonPath;
use segment::types::{
    Filter, IntPayloadType, Payload, PointIdType, SearchParams, ShardKey, WithPayloadInterface,
    WithVector,
};
use serde::{Deserialize, Serialize};
use serde_json::Value;
use sparse::common::sparse_vector::SparseVector;
use validator::{Validate, ValidationErrors};

/// Type for dense vector
pub type DenseVector = Vec<segment::data_types::vectors::VectorElementType>;

/// Type for multi dense vector
pub type MultiDenseVector = Vec<DenseVector>;

/// Vector Data
/// Vectors can be described directly with values
/// Or specified with source "objects" for inference
#[derive(Clone, Debug, PartialEq, Deserialize, Serialize, JsonSchema)]
#[serde(untagged, rename_all = "snake_case")]
pub enum Vector {
    Dense(DenseVector),
    Sparse(sparse::common::sparse_vector::SparseVector),
    MultiDense(MultiDenseVector),
    Document(Document),
    Image(Image),
    Object(InferenceObject),
}

/// Vector Data stored in Point
#[derive(Clone, Debug, PartialEq, Deserialize, Serialize, JsonSchema)]
#[serde(untagged, rename_all = "snake_case")]
pub enum VectorOutput {
    Dense(DenseVector),
    Sparse(sparse::common::sparse_vector::SparseVector),
    MultiDense(MultiDenseVector),
}

impl Validate for Vector {
    fn validate(&self) -> Result<(), validator::ValidationErrors> {
        match self {
            Vector::Dense(_) => Ok(()),
            Vector::Sparse(v) => v.validate(),
            Vector::MultiDense(m) => validate_multi_vector(m),
            Vector::Document(_) => Ok(()),
            Vector::Image(_) => Ok(()),
            Vector::Object(_) => Ok(()),
        }
    }
}

fn vector_example() -> DenseVector {
    vec![0.875, 0.140625, 0.8976]
}

fn multi_dense_vector_example() -> MultiDenseVector {
    vec![
        vec![0.875, 0.140625, 0.1102],
        vec![0.758, 0.28126, 0.96871],
        vec![0.621, 0.421878, 0.9375],
    ]
}

fn named_vector_example() -> HashMap<String, Vector> {
    let mut map = HashMap::new();
    map.insert(
        "image-embeddings".to_string(),
        Vector::Dense(vec![0.873, 0.140625, 0.8976]),
    );
    map
}

/// Full vector data per point separator with single and multiple vector modes
#[derive(Clone, Debug, PartialEq, Deserialize, Serialize, JsonSchema)]
#[serde(untagged, rename_all = "snake_case")]
pub enum VectorStruct {
    #[schemars(example = "vector_example")]
    Single(DenseVector),
    #[schemars(example = "multi_dense_vector_example")]
    MultiDense(MultiDenseVector),
    #[schemars(example = "named_vector_example")]
    Named(HashMap<String, Vector>),
    Document(Document),
    Image(Image),
    Object(InferenceObject),
}

/// Vector data stored in Point
#[derive(Clone, Debug, PartialEq, Deserialize, Serialize, JsonSchema)]
#[serde(untagged, rename_all = "snake_case")]
pub enum VectorStructOutput {
    #[schemars(example = "vector_example")]
    Single(DenseVector),
    #[schemars(example = "multi_dense_vector_example")]
    MultiDense(MultiDenseVector),
    #[schemars(example = "named_vector_example")]
    Named(HashMap<String, VectorOutput>),
}

impl VectorStruct {
    /// Check if this vector struct is empty.
    pub fn is_empty(&self) -> bool {
        match self {
            VectorStruct::Single(vector) => vector.is_empty(),
            VectorStruct::MultiDense(vector) => vector.is_empty(),
            VectorStruct::Named(vectors) => vectors.values().all(|v| match v {
                Vector::Dense(vector) => vector.is_empty(),
                Vector::Sparse(vector) => vector.indices.is_empty(),
                Vector::MultiDense(vector) => vector.is_empty(),
                Vector::Document(_) => false,
                Vector::Image(_) => false,
                Vector::Object(_) => false,
            }),
            VectorStruct::Document(_) => false,
            VectorStruct::Image(_) => false,
            VectorStruct::Object(_) => false,
        }
    }
}

impl Validate for VectorStruct {
    fn validate(&self) -> Result<(), validator::ValidationErrors> {
        match self {
            VectorStruct::Single(_) => Ok(()),
            VectorStruct::MultiDense(v) => validate_multi_vector(v),
            VectorStruct::Named(v) => common::validation::validate_iter(v.values()),
            VectorStruct::Document(_) => Ok(()),
            VectorStruct::Image(_) => Ok(()),
            VectorStruct::Object(_) => Ok(()),
        }
    }
}

#[derive(Clone, Default, Debug, Eq, PartialEq, Deserialize, Serialize, JsonSchema)]
pub struct Options {
    /// Parameters for the model
    /// Values of the parameters are model-specific
    pub options: Option<HashMap<String, Value>>,
}

impl Hash for Options {
    fn hash<H: Hasher>(&self, state: &mut H) {
        // Order of keys in the map should not affect the hash
        if let Some(options) = &self.options {
            let mut keys: Vec<_> = options.keys().collect();
            keys.sort();
            for key in keys {
                key.hash(state);
                options.get(key).unwrap().hash(state);
            }
        }
    }
}

/// WARN: Work-in-progress, unimplemented
///
/// Text document for embedding. Requires inference infrastructure, unimplemented.
#[derive(Clone, Debug, Eq, PartialEq, Deserialize, Serialize, JsonSchema, Hash, Validate)]
pub struct Document {
    /// Text of the document
    /// This field will be used as input for the embedding model
    #[schemars(example = "document_text_example")]
    pub text: String,
    /// Name of the model used to generate the vector
    /// List of available models depends on a provider
    #[validate(length(min = 1))]
    #[schemars(length(min = 1), example = "model_example")]
    pub model: String,
    #[serde(flatten)]
    pub options: Options,
}

/// WARN: Work-in-progress, unimplemented
///
/// Image object for embedding. Requires inference infrastructure, unimplemented.
#[derive(Clone, Debug, Eq, PartialEq, Deserialize, Serialize, JsonSchema, Validate, Hash)]
pub struct Image {
    /// Image data: base64 encoded image or an URL
    #[schemars(example = "image_value_example")]
    pub image: Value,
    /// Name of the model used to generate the vector
    /// List of available models depends on a provider
    #[validate(length(min = 1))]
    #[schemars(length(min = 1), example = "image_model_example")]
    pub model: String,
    /// Parameters for the model
    /// Values of the parameters are model-specific
    #[serde(flatten)]
    pub options: Options,
}

/// WARN: Work-in-progress, unimplemented
///
/// Custom object for embedding. Requires inference infrastructure, unimplemented.
#[derive(Clone, Debug, Eq, PartialEq, Deserialize, Serialize, JsonSchema, Hash, Validate)]
pub struct InferenceObject {
    /// Arbitrary data, used as input for the embedding model
    /// Used if the model requires more than one input or a custom input
    pub object: Value,
    /// Name of the model used to generate the vector
    /// List of available models depends on a provider
    #[validate(length(min = 1))]
    #[schemars(length(min = 1), example = "model_example")]
    pub model: String,
    /// Parameters for the model
    /// Values of the parameters are model-specific
    #[serde(flatten)]
    pub options: Options,
}

#[derive(Clone, Debug, PartialEq, Deserialize, Serialize, JsonSchema)]
#[serde(untagged, rename_all = "snake_case")]
pub enum BatchVectorStruct {
    Single(Vec<DenseVector>),
    MultiDense(Vec<MultiDenseVector>),
    Named(HashMap<String, Vec<Vector>>),
    Document(Vec<Document>),
    Image(Vec<Image>),
    Object(Vec<InferenceObject>),
}

#[derive(Clone, Debug, PartialEq, Deserialize, Serialize, JsonSchema)]
#[serde(rename_all = "snake_case")]
pub struct Batch {
    pub ids: Vec<PointIdType>,
    pub vectors: BatchVectorStruct,
    pub payloads: Option<Vec<Option<Payload>>>,
}

#[derive(Debug, Deserialize, Serialize, Clone, JsonSchema, PartialEq)]
#[serde(untagged)]
pub enum ShardKeySelector {
    ShardKey(ShardKey),
    ShardKeys(Vec<ShardKey>),
    // ToDo: select by pattern
}

fn version_example() -> segment::types::SeqNumberType {
    3
}

fn score_example() -> common::types::ScoreType {
    0.75
}

fn document_text_example() -> String {
    "This is a document text".to_string()
}

fn model_example() -> String {
    "jinaai/jina-embeddings-v2-base-en".to_string()
}

fn image_value_example() -> String {
    "https://example.com/image.jpg".to_string()
}

fn image_model_example() -> String {
    "Qdrant/clip-ViT-B-32-vision".to_string()
}

/// Search result
#[derive(Serialize, JsonSchema, Clone, Debug)]
pub struct ScoredPoint {
    /// Point id
    pub id: PointIdType,
    /// Point version
    #[schemars(example = "version_example")]
    pub version: segment::types::SeqNumberType,
    /// Points vector distance to the query vector
    #[schemars(example = "score_example")]
    pub score: ScoreType,
    /// Payload - values assigned to the point
    #[serde(skip_serializing_if = "Option::is_none")]
    pub payload: Option<segment::types::Payload>,
    /// Vector of the point
    #[serde(skip_serializing_if = "Option::is_none")]
    pub vector: Option<VectorStructOutput>,
    /// Shard Key
    #[serde(skip_serializing_if = "Option::is_none")]
    pub shard_key: Option<ShardKey>,
    /// Order-by value
    #[serde(skip_serializing_if = "Option::is_none")]
    pub order_value: Option<segment::data_types::order_by::OrderValue>,
}

/// Point data
#[derive(Clone, Debug, PartialEq, Serialize, JsonSchema)]
#[serde(rename_all = "snake_case")]
pub struct Record {
    /// Id of the point
    pub id: segment::types::PointIdType,
    /// Payload - values assigned to the point
    #[serde(skip_serializing_if = "Option::is_none")]
    pub payload: Option<segment::types::Payload>,
    /// Vector of the point
    #[serde(skip_serializing_if = "Option::is_none")]
    pub vector: Option<VectorStructOutput>,
    /// Shard Key
    #[serde(skip_serializing_if = "Option::is_none")]
    pub shard_key: Option<segment::types::ShardKey>,
    #[serde(skip_serializing_if = "Option::is_none")]
    pub order_value: Option<segment::data_types::order_by::OrderValue>,
}

/// Vector data separator for named and unnamed modes
/// Unnamed mode:
///
/// {
///   "vector": [1.0, 2.0, 3.0]
/// }
///
/// or named mode:
///
/// {
///   "vector": {
///     "vector": [1.0, 2.0, 3.0],
///     "name": "image-embeddings"
///   }
/// }
#[derive(Debug, Deserialize, Serialize, JsonSchema, Clone, PartialEq)]
#[serde(rename_all = "snake_case")]
#[serde(untagged)]
pub enum NamedVectorStruct {
    Default(segment::data_types::vectors::DenseVector),
    Dense(segment::data_types::vectors::NamedVector),
    Sparse(segment::data_types::vectors::NamedSparseVector),
    // No support for multi-dense vectors in search
}

#[derive(Deserialize, Serialize, JsonSchema, Clone, Debug, PartialEq)]
#[serde(untagged)]
pub enum OrderByInterface {
    Key(JsonPath),
    Struct(OrderBy),
}

/// Fusion algorithm allows to combine results of multiple prefetches.
///
/// Available fusion algorithms:
///
/// * `rrf` - Reciprocal Rank Fusion
/// * `dbsf` - Distribution-Based Score Fusion
#[derive(Debug, Serialize, Deserialize, JsonSchema)]
#[serde(rename_all = "snake_case")]
pub enum Fusion {
    Rrf,
    Dbsf,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema)]
#[serde(untagged)]
pub enum VectorInput {
    DenseVector(DenseVector),
    SparseVector(SparseVector),
    MultiDenseVector(MultiDenseVector),
    Id(segment::types::PointIdType),
    Document(Document),
    Image(Image),
    Object(InferenceObject),
}

#[derive(Debug, Serialize, Deserialize, JsonSchema, Validate)]
pub struct QueryRequestInternal {
    /// Sub-requests to perform first. If present, the query will be performed on the results of the prefetch(es).
    #[validate(nested)]
    #[serde(default, with = "MaybeOneOrMany")]
    #[schemars(with = "MaybeOneOrMany<Prefetch>")]
    pub prefetch: Option<Vec<Prefetch>>,

    /// Query to perform. If missing without prefetches, returns points ordered by their IDs.
    #[validate(nested)]
    pub query: Option<QueryInterface>,

    /// Define which vector name to use for querying. If missing, the default vector is used.
    pub using: Option<String>,

    /// Filter conditions - return only those points that satisfy the specified conditions.
    #[validate(nested)]
    pub filter: Option<Filter>,

    /// Search params for when there is no prefetch
    #[validate(nested)]
    pub params: Option<SearchParams>,

    /// Return points with scores better than this threshold.
    pub score_threshold: Option<ScoreType>,

    /// Max number of points to return. Default is 10.
    #[validate(range(min = 1))]
    pub limit: Option<usize>,

    /// Offset of the result. Skip this many points. Default is 0
    pub offset: Option<usize>,

    /// Options for specifying which vectors to include into the response. Default is false.
    pub with_vector: Option<WithVector>,

    /// Options for specifying which payload to include or not. Default is false.
    pub with_payload: Option<WithPayloadInterface>,

    /// The location to use for IDs lookup, if not specified - use the current collection and the 'using' vector
    /// Note: the other collection vectors should have the same vector size as the 'using' vector in the current collection
    #[serde(default)]
    pub lookup_from: Option<LookupLocation>,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema, Validate)]
pub struct QueryRequest {
    #[validate(nested)]
    #[serde(flatten)]
    pub internal: QueryRequestInternal,
    pub shard_key: Option<ShardKeySelector>,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema, Validate)]
pub struct QueryRequestBatch {
    #[validate(nested)]
    pub searches: Vec<QueryRequest>,
}

#[derive(Debug, Serialize, JsonSchema)]
pub struct QueryResponse {
    pub points: Vec<ScoredPoint>,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema)]
#[serde(untagged)]
pub enum QueryInterface {
    Nearest(VectorInput),
    Query(Query),
}

#[derive(Debug, Serialize, Deserialize, JsonSchema)]
#[serde(untagged)]
pub enum Query {
    /// Find the nearest neighbors to this vector.
    Nearest(NearestQuery),

    /// Use multiple positive and negative vectors to find the results.
    Recommend(RecommendQuery),

    /// Search for nearest points, but constrain the search space with context
    Discover(DiscoverQuery),

    /// Return points that live in positive areas.
    Context(ContextQuery),

    /// Order the points by a payload field.
    OrderBy(OrderByQuery),

    /// Fuse the results of multiple prefetches.
    Fusion(FusionQuery),

    /// Sample points from the collection, non-deterministically.
    Sample(SampleQuery),
}

#[derive(Debug, Serialize, Deserialize, JsonSchema)]
#[serde(rename_all = "snake_case")]
pub struct NearestQuery {
    pub nearest: VectorInput,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema)]
#[serde(rename_all = "snake_case")]
pub struct RecommendQuery {
    pub recommend: RecommendInput,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema)]
#[serde(rename_all = "snake_case")]
pub struct DiscoverQuery {
    pub discover: DiscoverInput,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema)]
#[serde(rename_all = "snake_case")]
pub struct ContextQuery {
    pub context: ContextInput,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema)]
#[serde(rename_all = "snake_case")]
pub struct OrderByQuery {
    pub order_by: OrderByInterface,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema)]
#[serde(rename_all = "snake_case")]
pub struct FusionQuery {
    pub fusion: Fusion,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema)]
#[serde(rename_all = "snake_case")]
pub struct SampleQuery {
    pub sample: Sample,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema, Validate)]
pub struct Prefetch {
    /// Sub-requests to perform first. If present, the query will be performed on the results of the prefetches.
    #[validate(nested)]
    #[serde(default, with = "MaybeOneOrMany")]
    #[schemars(with = "MaybeOneOrMany<Prefetch>")]
    pub prefetch: Option<Vec<Prefetch>>,

    /// Query to perform. If missing without prefetches, returns points ordered by their IDs.
    #[validate(nested)]
    pub query: Option<QueryInterface>,

    /// Define which vector name to use for querying. If missing, the default vector is used.
    pub using: Option<String>,

    /// Filter conditions - return only those points that satisfy the specified conditions.
    #[validate(nested)]
    pub filter: Option<Filter>,

    /// Search params for when there is no prefetch
    #[validate(nested)]
    pub params: Option<SearchParams>,

    /// Return points with scores better than this threshold.
    pub score_threshold: Option<ScoreType>,

    /// Max number of points to return. Default is 10.
    #[validate(range(min = 1))]
    pub limit: Option<usize>,

    /// The location to use for IDs lookup, if not specified - use the current collection and the 'using' vector
    /// Note: the other collection vectors should have the same vector size as the 'using' vector in the current collection
    #[serde(default)]
    pub lookup_from: Option<LookupLocation>,
}

/// How to use positive and negative examples to find the results, default is `average_vector`:
///
/// * `average_vector` - Average positive and negative vectors and create a single query
///   with the formula `query = avg_pos + avg_pos - avg_neg`. Then performs normal search.
///
/// * `best_score` - Uses custom search objective. Each candidate is compared against all
///   examples, its score is then chosen from the `max(max_pos_score, max_neg_score)`.
///   If the `max_neg_score` is chosen then it is squared and negated, otherwise it is just
///   the `max_pos_score`.
#[derive(Debug, Deserialize, Serialize, JsonSchema, Default, PartialEq, Clone, Copy)]
#[serde(rename_all = "snake_case")]
pub enum RecommendStrategy {
    #[default]
    AverageVector,
    BestScore,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema)]
pub struct RecommendInput {
    /// Look for vectors closest to the vectors from these points
    pub positive: Option<Vec<VectorInput>>,

    /// Try to avoid vectors like the vector from these points
    pub negative: Option<Vec<VectorInput>>,

    /// How to use the provided vectors to find the results
    pub strategy: Option<RecommendStrategy>,
}

impl RecommendInput {
    pub fn iter(&self) -> impl Iterator<Item = &VectorInput> {
        self.positive
            .iter()
            .flatten()
            .chain(self.negative.iter().flatten())
    }
}

#[derive(Debug, Serialize, Deserialize, JsonSchema, Validate)]
pub struct DiscoverInput {
    /// Use this as the primary search objective
    #[validate(nested)]
    pub target: VectorInput,

    /// Search space will be constrained by these pairs of vectors
    #[validate(nested)]
    #[serde(with = "MaybeOneOrMany")]
    #[schemars(with = "MaybeOneOrMany<ContextPair>")]
    pub context: Option<Vec<ContextPair>>,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema)]
pub struct ContextInput(
    /// Search space will be constrained by these pairs of vectors
    #[serde(with = "MaybeOneOrMany")]
    #[schemars(with = "MaybeOneOrMany<ContextPair>")]
    pub Option<Vec<ContextPair>>,
);

#[derive(Debug, Serialize, Deserialize, JsonSchema, Validate)]
pub struct ContextPair {
    /// A positive vector
    #[validate(nested)]
    pub positive: VectorInput,

    /// Repel from this vector
    #[validate(nested)]
    pub negative: VectorInput,
}

impl ContextPair {
    pub fn iter(&self) -> impl Iterator<Item = &VectorInput> {
        std::iter::once(&self.positive).chain(std::iter::once(&self.negative))
    }
}

#[derive(Debug, Serialize, Deserialize, JsonSchema)]
#[serde(rename_all = "snake_case")]
pub enum Sample {
    Random,
}

#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, JsonSchema)]
pub struct WithLookup {
    /// Name of the collection to use for points lookup
    #[serde(rename = "collection")]
    pub collection_name: String,

    /// Options for specifying which payload to include (or not)
    #[serde(default = "default_with_payload")]
    pub with_payload: Option<WithPayloadInterface>,

    /// Options for specifying which vectors to include (or not)
    #[serde(alias = "with_vector")]
    #[serde(default)]
    pub with_vectors: Option<WithVector>,
}

#[allow(clippy::unnecessary_wraps)] // Used as serde default
const fn default_with_payload() -> Option<WithPayloadInterface> {
    Some(WithPayloadInterface::Bool(true))
}

#[derive(Serialize, Deserialize, JsonSchema, Debug, Clone, PartialEq)]
#[serde(untagged)]
pub enum WithLookupInterface {
    Collection(String),
    WithLookup(WithLookup),
}

/// Defines a location to use for looking up the vector.
/// Specifies collection and vector field name.
#[derive(Debug, Deserialize, Serialize, JsonSchema, Clone, PartialEq)]
#[serde(rename_all = "snake_case")]
pub struct LookupLocation {
    /// Name of the collection used for lookup
    pub collection: String,
    /// Optional name of the vector field within the collection.
    /// If not provided, the default vector field will be used.
    #[serde(default)]
    pub vector: Option<String>,

    /// Specify in which shards to look for the points, if not specified - look in all shards
    #[serde(default, skip_serializing_if = "Option::is_none")]
    pub shard_key: Option<ShardKeySelector>,
}

#[derive(Validate, Serialize, Deserialize, JsonSchema, Debug, Clone, PartialEq)]
pub struct BaseGroupRequest {
    /// Payload field to group by, must be a string or number field.
    /// If the field contains more than 1 value, all values will be used for grouping.
    /// One point can be in multiple groups.
    #[schemars(length(min = 1))]
    pub group_by: JsonPath,

    /// Maximum amount of points to return per group
    #[validate(range(min = 1))]
    pub group_size: u32,

    /// Maximum amount of groups to return
    #[validate(range(min = 1))]
    pub limit: u32,

    /// Look for points in another collection using the group ids
    pub with_lookup: Option<WithLookupInterface>,
}

#[derive(Debug, Deserialize, Serialize, JsonSchema, Validate, Clone)]
pub struct SearchGroupsRequestInternal {
    /// Look for vectors closest to this
    #[validate(nested)]
    pub vector: NamedVectorStruct,

    /// Look only for points which satisfies this conditions
    #[validate(nested)]
    pub filter: Option<Filter>,

    /// Additional search params
    #[validate(nested)]
    pub params: Option<SearchParams>,

    /// Select which payload to return with the response. Default is false.
    pub with_payload: Option<WithPayloadInterface>,

    /// Options for specifying which vectors to include into response. Default is false.
    #[serde(default, alias = "with_vectors")]
    pub with_vector: Option<WithVector>,

    /// Define a minimal score threshold for the result.
    /// If defined, less similar results will not be returned.
    /// Score of the returned result might be higher or smaller than the threshold depending on the
    /// Distance function used. E.g. for cosine similarity only higher scores will be returned.
    pub score_threshold: Option<ScoreType>,

    #[serde(flatten)]
    #[validate(nested)]
    pub group_request: BaseGroupRequest,
}

/// Search request.
/// Holds all conditions and parameters for the search of most similar points by vector similarity
/// given the filtering restrictions.
#[derive(Deserialize, Serialize, JsonSchema, Validate, Clone, Debug, PartialEq)]
#[serde(rename_all = "snake_case")]
pub struct SearchRequestInternal {
    /// Look for vectors closest to this
    #[validate(nested)]
    pub vector: NamedVectorStruct,
    /// Look only for points which satisfies this conditions
    #[validate(nested)]
    pub filter: Option<Filter>,
    /// Additional search params
    #[validate(nested)]
    pub params: Option<SearchParams>,
    /// Max number of result to return
    #[serde(alias = "top")]
    #[validate(range(min = 1))]
    pub limit: usize,
    /// Offset of the first result to return.
    /// May be used to paginate results.
    /// Note: large offset values may cause performance issues.
    pub offset: Option<usize>,
    /// Select which payload to return with the response. Default is false.
    pub with_payload: Option<WithPayloadInterface>,
    /// Options for specifying which vectors to include into response. Default is false.
    #[serde(default, alias = "with_vectors")]
    pub with_vector: Option<WithVector>,
    /// Define a minimal score threshold for the result.
    /// If defined, less similar results will not be returned.
    /// Score of the returned result might be higher or smaller than the threshold depending on the
    /// Distance function used. E.g. for cosine similarity only higher scores will be returned.
    pub score_threshold: Option<ScoreType>,
}

#[derive(Validate, Serialize, Deserialize, JsonSchema, Debug, Clone, PartialEq)]
pub struct QueryBaseGroupRequest {
    /// Payload field to group by, must be a string or number field.
    /// If the field contains more than 1 value, all values will be used for grouping.
    /// One point can be in multiple groups.
    #[schemars(length(min = 1))]
    pub group_by: JsonPath,

    /// Maximum amount of points to return per group. Default is 3.
    #[validate(range(min = 1))]
    pub group_size: Option<usize>,

    /// Maximum amount of groups to return. Default is 10.
    #[validate(range(min = 1))]
    pub limit: Option<usize>,

    /// Look for points in another collection using the group ids
    pub with_lookup: Option<WithLookupInterface>,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema, Validate)]
pub struct QueryGroupsRequestInternal {
    /// Sub-requests to perform first. If present, the query will be performed on the results of the prefetch(es).
    #[validate(nested)]
    #[serde(default, with = "MaybeOneOrMany")]
    #[schemars(with = "MaybeOneOrMany<Prefetch>")]
    pub prefetch: Option<Vec<Prefetch>>,

    /// Query to perform. If missing without prefetches, returns points ordered by their IDs.
    #[validate(nested)]
    pub query: Option<QueryInterface>,

    /// Define which vector name to use for querying. If missing, the default vector is used.
    pub using: Option<String>,

    /// Filter conditions - return only those points that satisfy the specified conditions.
    #[validate(nested)]
    pub filter: Option<Filter>,

    /// Search params for when there is no prefetch
    #[validate(nested)]
    pub params: Option<SearchParams>,

    /// Return points with scores better than this threshold.
    pub score_threshold: Option<ScoreType>,

    /// Options for specifying which vectors to include into the response. Default is false.
    pub with_vector: Option<WithVector>,

    /// Options for specifying which payload to include or not. Default is false.
    pub with_payload: Option<WithPayloadInterface>,

    /// The location to use for IDs lookup, if not specified - use the current collection and the 'using' vector
    /// Note: the other collection vectors should have the same vector size as the 'using' vector in the current collection
    #[serde(default)]
    pub lookup_from: Option<LookupLocation>,

    #[serde(flatten)]
    #[validate(nested)]
    pub group_request: QueryBaseGroupRequest,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema, Validate)]
pub struct QueryGroupsRequest {
    #[validate(nested)]
    #[serde(flatten)]
    pub search_group_request: QueryGroupsRequestInternal,

    pub shard_key: Option<ShardKeySelector>,
}

#[derive(Serialize, Deserialize, JsonSchema, Validate, Debug, PartialEq)]
#[serde(rename_all = "snake_case")]
pub struct SearchMatrixRequestInternal {
    /// Look only for points which satisfies this conditions
    #[validate(nested)]
    pub filter: Option<Filter>,
    /// How many points to select and search within. Default is 10.
    #[validate(range(min = 2))]
    pub sample: Option<usize>,
    /// How many neighbours per sample to find. Default is 3.
    #[validate(range(min = 1))]
    pub limit: Option<usize>,
    /// Define which vector name to use for querying. If missing, the default vector is used.
    pub using: Option<String>,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema, Validate)]
#[serde(rename_all = "snake_case")]
pub struct SearchMatrixRequest {
    #[serde(flatten)]
    #[validate(nested)]
    pub search_request: SearchMatrixRequestInternal,
    /// Specify in which shards to look for the points, if not specified - look in all shards
    #[serde(default, skip_serializing_if = "Option::is_none")]
    pub shard_key: Option<ShardKeySelector>,
}

#[derive(Debug, Serialize, JsonSchema, PartialEq)]
#[serde(rename_all = "snake_case")]
pub struct SearchMatrixOffsetsResponse {
    /// Row indices of the matrix
    pub offsets_row: Vec<u64>,
    /// Column indices of the matrix
    pub offsets_col: Vec<u64>,
    /// Scores associated with matrix coordinates
    pub scores: Vec<ScoreType>,
    /// Ids of the points in order
    pub ids: Vec<PointIdType>,
}

#[derive(Debug, Serialize, JsonSchema, PartialEq)]
#[serde(rename_all = "snake_case")]
/// Pair of points (a, b) with score
pub struct SearchMatrixPair {
    pub a: PointIdType,
    pub b: PointIdType,
    pub score: ScoreType,
}

impl SearchMatrixPair {
    pub fn new(a: impl Into<PointIdType>, b: impl Into<PointIdType>, score: ScoreType) -> Self {
        Self {
            a: a.into(),
            b: b.into(),
            score,
        }
    }
}

#[derive(Debug, Serialize, JsonSchema, PartialEq)]
#[serde(rename_all = "snake_case")]
pub struct SearchMatrixPairsResponse {
    /// List of pairs of points with scores
    pub pairs: Vec<SearchMatrixPair>,
}

#[derive(Debug, JsonSchema, Serialize, Deserialize, Validate)]
pub struct FacetRequestInternal {
    /// Payload key to use for faceting.
    pub key: JsonPath,

    /// Max number of hits to return. Default is 10.
    #[validate(range(min = 1))]
    pub limit: Option<usize>,

    /// Filter conditions - only consider points that satisfy these conditions.
    pub filter: Option<Filter>,

    /// Whether to do a more expensive exact count for each of the values in the facet. Default is false.
    pub exact: Option<bool>,
}

#[derive(Debug, Serialize, Deserialize, JsonSchema, Validate)]
pub struct FacetRequest {
    #[validate(nested)]
    #[serde(flatten)]
    pub facet_request: FacetRequestInternal,

    pub shard_key: Option<ShardKeySelector>,
}

#[derive(Debug, Serialize, JsonSchema)]
#[serde(untagged)]
pub enum FacetValue {
    String(String),
    Integer(IntPayloadType),
    Bool(bool),
}

#[derive(Debug, Serialize, JsonSchema)]
pub struct FacetValueHit {
    pub value: FacetValue,
    pub count: usize,
}

#[derive(Debug, Serialize, JsonSchema)]
pub struct FacetResponse {
    pub hits: Vec<FacetValueHit>,
}

#[derive(Clone, Debug, PartialEq, Deserialize, Serialize, JsonSchema, Validate)]
#[serde(rename_all = "snake_case")]
pub struct PointStruct {
    /// Point id
    pub id: PointIdType,
    /// Vectors
    #[serde(alias = "vectors")]
    #[validate(nested)]
    pub vector: VectorStruct,
    /// Payload values (optional)
    pub payload: Option<Payload>,
}

#[derive(Debug, Deserialize, Serialize, Clone, Validate, JsonSchema)]
pub struct PointsBatch {
    #[validate(nested)]
    pub batch: Batch,
    #[serde(default, skip_serializing_if = "Option::is_none")]
    pub shard_key: Option<ShardKeySelector>,
}

#[derive(Clone, Debug, PartialEq, Deserialize, Serialize, JsonSchema)]
pub struct PointVectors {
    /// Point id
    pub id: PointIdType,
    /// Vectors
    #[serde(alias = "vectors")]
    pub vector: VectorStruct,
}

#[derive(Debug, Deserialize, Serialize, JsonSchema, Validate, Clone)]
pub struct UpdateVectors {
    /// Points with named vectors
    #[validate(nested)]
    #[validate(length(min = 1, message = "must specify points to update"))]
    pub points: Vec<PointVectors>,
    #[serde(default, skip_serializing_if = "Option::is_none")]
    pub shard_key: Option<ShardKeySelector>,
}

#[derive(Debug, Deserialize, Serialize, Clone, JsonSchema, Validate)]
pub struct PointsList {
    #[validate(nested)]
    pub points: Vec<PointStruct>,
    #[serde(default, skip_serializing_if = "Option::is_none")]
    pub shard_key: Option<ShardKeySelector>,
}

impl<'de> serde::Deserialize<'de> for PointInsertOperations {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let value = serde_json::Value::deserialize(deserializer)?;
        match value {
            serde_json::Value::Object(map) => {
                if map.contains_key("batch") {
                    PointsBatch::deserialize(serde_json::Value::Object(map))
                        .map(PointInsertOperations::PointsBatch)
                        .map_err(serde::de::Error::custom)
                } else if map.contains_key("points") {
                    PointsList::deserialize(serde_json::Value::Object(map))
                        .map(PointInsertOperations::PointsList)
                        .map_err(serde::de::Error::custom)
                } else {
                    Err(serde::de::Error::custom(
                        "Invalid PointInsertOperations format",
                    ))
                }
            }
            _ => Err(serde::de::Error::custom(
                "Invalid PointInsertOperations format",
            )),
        }
    }
}

#[derive(Debug, Serialize, Clone, JsonSchema)]
#[serde(untagged)]
pub enum PointInsertOperations {
    /// Inset points from a batch.
    PointsBatch(PointsBatch),
    /// Insert points from a list
    PointsList(PointsList),
}

impl Validate for PointInsertOperations {
    fn validate(&self) -> Result<(), ValidationErrors> {
        match self {
            PointInsertOperations::PointsBatch(batch) => batch.validate(),
            PointInsertOperations::PointsList(list) => list.validate(),
        }
    }
}