File size: 14,052 Bytes
84d2a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
use std::collections::HashSet;
use std::mem;
use std::sync::Arc;
use std::time::Duration;

use common::counter::hardware_accumulator::HwMeasurementAcc;
use futures::future::BoxFuture;
use futures::FutureExt;
use parking_lot::Mutex;
use segment::common::reciprocal_rank_fusion::rrf_scoring;
use segment::common::score_fusion::{score_fusion, ScoreFusion};
use segment::types::{Filter, HasIdCondition, ScoredPoint, WithPayloadInterface, WithVector};
use tokio::runtime::Handle;
use tokio::time::error::Elapsed;

use super::LocalShard;
use crate::collection_manager::segments_searcher::SegmentsSearcher;
use crate::operations::types::{
    CollectionError, CollectionResult, CoreSearchRequest, CoreSearchRequestBatch,
    QueryScrollRequestInternal, ScrollOrder,
};
use crate::operations::universal_query::planned_query::{
    MergePlan, PlannedQuery, RescoreParams, Source,
};
use crate::operations::universal_query::shard_query::{
    FusionInternal, SampleInternal, ScoringQuery, ShardQueryResponse,
};

pub enum FetchedSource {
    Search(usize),
    Scroll(usize),
}

struct PrefetchResults {
    search_results: Mutex<Vec<Vec<ScoredPoint>>>,
    scroll_results: Mutex<Vec<Vec<ScoredPoint>>>,
}

impl PrefetchResults {
    fn new(search_results: Vec<Vec<ScoredPoint>>, scroll_results: Vec<Vec<ScoredPoint>>) -> Self {
        Self {
            scroll_results: Mutex::new(scroll_results),
            search_results: Mutex::new(search_results),
        }
    }

    fn get(&self, element: FetchedSource) -> CollectionResult<Vec<ScoredPoint>> {
        match element {
            FetchedSource::Search(idx) => self.search_results.lock().get_mut(idx).map(mem::take),
            FetchedSource::Scroll(idx) => self.scroll_results.lock().get_mut(idx).map(mem::take),
        }
        .ok_or_else(|| CollectionError::service_error("Expected a prefetched source to exist"))
    }
}

impl LocalShard {
    pub async fn do_planned_query(
        &self,
        request: PlannedQuery,
        search_runtime_handle: &Handle,
        timeout: Option<Duration>,
        hw_counter_acc: &HwMeasurementAcc,
    ) -> CollectionResult<Vec<ShardQueryResponse>> {
        let start_time = std::time::Instant::now();
        let timeout = timeout.unwrap_or(self.shared_storage_config.search_timeout);

        let searches_f = self.do_search(
            Arc::new(CoreSearchRequestBatch {
                searches: request.searches,
            }),
            search_runtime_handle,
            Some(timeout),
            hw_counter_acc,
        );

        let scrolls_f =
            self.query_scroll_batch(Arc::new(request.scrolls), search_runtime_handle, timeout);

        // execute both searches and scrolls concurrently
        let (search_results, scroll_results) = tokio::try_join!(searches_f, scrolls_f)?;
        let prefetch_holder = PrefetchResults::new(search_results, scroll_results);

        // decrease timeout by the time spent so far
        let timeout = timeout.saturating_sub(start_time.elapsed());

        let merge_futures = request.root_plans.into_iter().map(|merge_plan| {
            self.recurse_prefetch(
                merge_plan,
                &prefetch_holder,
                search_runtime_handle,
                timeout,
                0,
                hw_counter_acc,
            )
        });

        let batched_scored_points = futures::future::try_join_all(merge_futures).await?;

        Ok(batched_scored_points)
    }

    /// Fetches the payload and/or vector if required. This will filter out points if they are deleted between search and retrieve.
    async fn fill_with_payload_or_vectors(
        &self,
        query_response: Vec<ScoredPoint>,
        with_payload: WithPayloadInterface,
        with_vector: WithVector,
        timeout: Duration,
    ) -> CollectionResult<Vec<ScoredPoint>> {
        if !with_payload.is_required() && !with_vector.is_enabled() {
            return Ok(query_response);
        }

        // ids to retrieve (deduplication happens in the searcher)
        let point_ids: Vec<_> = query_response
            .iter()
            .map(|scored_point| scored_point.id)
            .collect();

        // Collect retrieved records into a hashmap for fast lookup
        let records_map = tokio::time::timeout(
            timeout,
            SegmentsSearcher::retrieve(
                self.segments.clone(),
                &point_ids,
                &(&with_payload).into(),
                &with_vector,
                &self.search_runtime,
            ),
        )
        .await
        .map_err(|_: Elapsed| CollectionError::timeout(timeout.as_secs() as usize, "retrieve"))??;

        // It might be possible, that we won't find all records,
        // so we need to re-collect the results
        let query_response: Vec<_> = query_response
            .into_iter()
            .filter_map(|mut point| {
                records_map.get(&point.id).map(|record| {
                    point.payload.clone_from(&record.payload);
                    point.vector.clone_from(&record.vector);
                    point
                })
            })
            .collect();

        Ok(query_response)
    }

    fn recurse_prefetch<'shard, 'query>(
        &'shard self,
        merge_plan: MergePlan,
        prefetch_holder: &'query PrefetchResults,
        search_runtime_handle: &'shard Handle,
        timeout: Duration,
        depth: usize,
        hw_counter_acc: &HwMeasurementAcc,
    ) -> BoxFuture<'query, CollectionResult<Vec<Vec<ScoredPoint>>>>
    where
        'shard: 'query,
    {
        let hw_collector = hw_counter_acc.new_collector();
        async move {
            let start_time = std::time::Instant::now();
            let max_len = merge_plan.sources.len();
            let mut sources = Vec::with_capacity(max_len);

            // We need to preserve the order of the sources for some fusion strategies
            for source in merge_plan.sources {
                match source {
                    Source::SearchesIdx(idx) => {
                        sources.push(prefetch_holder.get(FetchedSource::Search(idx))?)
                    }
                    Source::ScrollsIdx(idx) => {
                        sources.push(prefetch_holder.get(FetchedSource::Scroll(idx))?)
                    }
                    Source::Prefetch(prefetch) => {
                        let merged = self
                            .recurse_prefetch(
                                *prefetch,
                                prefetch_holder,
                                search_runtime_handle,
                                timeout,
                                depth + 1,
                                &hw_collector,
                            )
                            .await?
                            .into_iter();
                        sources.extend(merged);
                    }
                }
            }

            // decrease timeout by the time spent so far (recursive calls)
            let timeout = timeout.saturating_sub(start_time.elapsed());

            // Rescore or return plain sources
            if let Some(rescore_params) = merge_plan.rescore_params {
                let rescored = self
                    .rescore(
                        sources,
                        rescore_params,
                        search_runtime_handle,
                        timeout,
                        &hw_collector,
                    )
                    .await?;

                Ok(vec![rescored])
            } else {
                // The sources here are passed to the next layer without any extra processing.
                // It is either a query without prefetches, or a fusion request and the intermediate results are passed to the next layer.
                debug_assert_eq!(depth, 0);
                Ok(sources)
            }
        }
        .boxed()
    }

    /// Rescore list of scored points
    async fn rescore<'a>(
        &self,
        sources: Vec<Vec<ScoredPoint>>,
        rescore_params: RescoreParams,
        search_runtime_handle: &Handle,
        timeout: Duration,
        hw_counter_acc: &HwMeasurementAcc,
    ) -> CollectionResult<Vec<ScoredPoint>> {
        let RescoreParams {
            rescore,
            score_threshold,
            limit,
            with_vector,
            with_payload,
            params,
        } = rescore_params;

        match rescore {
            ScoringQuery::Fusion(fusion) => {
                self.fusion_rescore(
                    sources.into_iter(),
                    fusion,
                    score_threshold,
                    limit,
                    with_payload,
                    with_vector,
                    timeout,
                )
                .await
            }
            ScoringQuery::OrderBy(order_by) => {
                // create single scroll request for rescoring query
                let filter = filter_with_sources_ids(sources.into_iter());

                // Note: score_threshold is not used in this case, as all results will have same score,
                // but different order_value
                let scroll_request = QueryScrollRequestInternal {
                    limit,
                    filter: Some(filter),
                    with_payload,
                    with_vector,
                    scroll_order: ScrollOrder::ByField(order_by),
                };

                self.query_scroll_batch(
                    Arc::new(vec![scroll_request]),
                    search_runtime_handle,
                    timeout,
                )
                .await?
                .pop()
                .ok_or_else(|| {
                    CollectionError::service_error(
                        "Rescoring with order-by query didn't return expected batch of results",
                    )
                })
            }
            ScoringQuery::Vector(query_enum) => {
                // create single search request for rescoring query
                let filter = filter_with_sources_ids(sources.into_iter());

                let search_request = CoreSearchRequest {
                    query: query_enum,
                    filter: Some(filter),
                    params,
                    limit,
                    offset: 0,
                    with_payload: Some(with_payload),
                    with_vector: Some(with_vector),
                    score_threshold,
                };
                let rescoring_core_search_request = CoreSearchRequestBatch {
                    searches: vec![search_request],
                };

                self.do_search(
                    Arc::new(rescoring_core_search_request),
                    search_runtime_handle,
                    Some(timeout),
                    hw_counter_acc,
                )
                .await?
                // One search request is sent. We expect only one result
                .pop()
                .ok_or_else(|| {
                    CollectionError::service_error(
                        "Rescoring with vector(s) query didn't return expected batch of results",
                    )
                })
            }
            ScoringQuery::Sample(sample) => match sample {
                SampleInternal::Random => {
                    // create single scroll request for rescoring query
                    let filter = filter_with_sources_ids(sources.into_iter());

                    // Note: score_threshold is not used in this case, as all results will have same score and order_value
                    let scroll_request = QueryScrollRequestInternal {
                        limit,
                        filter: Some(filter),
                        with_payload,
                        with_vector,
                        scroll_order: ScrollOrder::Random,
                    };

                    self.query_scroll_batch(
                        Arc::new(vec![scroll_request]),
                        search_runtime_handle,
                        timeout,
                    )
                    .await?
                    .pop()
                    .ok_or_else(|| {
                        CollectionError::service_error(
                            "Rescoring with order-by query didn't return expected batch of results",
                        )
                    })
                }
            },
        }
    }

    #[allow(clippy::too_many_arguments)]
    async fn fusion_rescore<'a>(
        &self,
        sources: impl Iterator<Item = Vec<ScoredPoint>>,
        fusion: FusionInternal,
        score_threshold: Option<f32>,
        limit: usize,
        with_payload: WithPayloadInterface,
        with_vector: WithVector,
        timeout: Duration,
    ) -> Result<Vec<ScoredPoint>, CollectionError> {
        let fused = match fusion {
            FusionInternal::Rrf => rrf_scoring(sources),
            FusionInternal::Dbsf => score_fusion(sources, ScoreFusion::dbsf()),
        };

        let top_fused: Vec<_> = if let Some(score_threshold) = score_threshold {
            fused
                .into_iter()
                .take_while(|point| point.score >= score_threshold)
                .take(limit)
                .collect()
        } else {
            fused.into_iter().take(limit).collect()
        };

        let filled_top_fused = self
            .fill_with_payload_or_vectors(top_fused, with_payload, with_vector, timeout)
            .await?;

        Ok(filled_top_fused)
    }
}

/// Extracts point ids from sources, and creates a filter to only include those ids.
fn filter_with_sources_ids(sources: impl Iterator<Item = Vec<ScoredPoint>>) -> Filter {
    let mut point_ids = HashSet::new();

    for source in sources {
        for point in source.iter() {
            point_ids.insert(point.id);
        }
    }

    // create filter for target point ids
    Filter::new_must(segment::types::Condition::HasId(HasIdCondition::from(
        point_ids,
    )))
}