Spaces:
Build error
Build error
File size: 14,052 Bytes
84d2a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
use std::collections::HashSet;
use std::mem;
use std::sync::Arc;
use std::time::Duration;
use common::counter::hardware_accumulator::HwMeasurementAcc;
use futures::future::BoxFuture;
use futures::FutureExt;
use parking_lot::Mutex;
use segment::common::reciprocal_rank_fusion::rrf_scoring;
use segment::common::score_fusion::{score_fusion, ScoreFusion};
use segment::types::{Filter, HasIdCondition, ScoredPoint, WithPayloadInterface, WithVector};
use tokio::runtime::Handle;
use tokio::time::error::Elapsed;
use super::LocalShard;
use crate::collection_manager::segments_searcher::SegmentsSearcher;
use crate::operations::types::{
CollectionError, CollectionResult, CoreSearchRequest, CoreSearchRequestBatch,
QueryScrollRequestInternal, ScrollOrder,
};
use crate::operations::universal_query::planned_query::{
MergePlan, PlannedQuery, RescoreParams, Source,
};
use crate::operations::universal_query::shard_query::{
FusionInternal, SampleInternal, ScoringQuery, ShardQueryResponse,
};
pub enum FetchedSource {
Search(usize),
Scroll(usize),
}
struct PrefetchResults {
search_results: Mutex<Vec<Vec<ScoredPoint>>>,
scroll_results: Mutex<Vec<Vec<ScoredPoint>>>,
}
impl PrefetchResults {
fn new(search_results: Vec<Vec<ScoredPoint>>, scroll_results: Vec<Vec<ScoredPoint>>) -> Self {
Self {
scroll_results: Mutex::new(scroll_results),
search_results: Mutex::new(search_results),
}
}
fn get(&self, element: FetchedSource) -> CollectionResult<Vec<ScoredPoint>> {
match element {
FetchedSource::Search(idx) => self.search_results.lock().get_mut(idx).map(mem::take),
FetchedSource::Scroll(idx) => self.scroll_results.lock().get_mut(idx).map(mem::take),
}
.ok_or_else(|| CollectionError::service_error("Expected a prefetched source to exist"))
}
}
impl LocalShard {
pub async fn do_planned_query(
&self,
request: PlannedQuery,
search_runtime_handle: &Handle,
timeout: Option<Duration>,
hw_counter_acc: &HwMeasurementAcc,
) -> CollectionResult<Vec<ShardQueryResponse>> {
let start_time = std::time::Instant::now();
let timeout = timeout.unwrap_or(self.shared_storage_config.search_timeout);
let searches_f = self.do_search(
Arc::new(CoreSearchRequestBatch {
searches: request.searches,
}),
search_runtime_handle,
Some(timeout),
hw_counter_acc,
);
let scrolls_f =
self.query_scroll_batch(Arc::new(request.scrolls), search_runtime_handle, timeout);
// execute both searches and scrolls concurrently
let (search_results, scroll_results) = tokio::try_join!(searches_f, scrolls_f)?;
let prefetch_holder = PrefetchResults::new(search_results, scroll_results);
// decrease timeout by the time spent so far
let timeout = timeout.saturating_sub(start_time.elapsed());
let merge_futures = request.root_plans.into_iter().map(|merge_plan| {
self.recurse_prefetch(
merge_plan,
&prefetch_holder,
search_runtime_handle,
timeout,
0,
hw_counter_acc,
)
});
let batched_scored_points = futures::future::try_join_all(merge_futures).await?;
Ok(batched_scored_points)
}
/// Fetches the payload and/or vector if required. This will filter out points if they are deleted between search and retrieve.
async fn fill_with_payload_or_vectors(
&self,
query_response: Vec<ScoredPoint>,
with_payload: WithPayloadInterface,
with_vector: WithVector,
timeout: Duration,
) -> CollectionResult<Vec<ScoredPoint>> {
if !with_payload.is_required() && !with_vector.is_enabled() {
return Ok(query_response);
}
// ids to retrieve (deduplication happens in the searcher)
let point_ids: Vec<_> = query_response
.iter()
.map(|scored_point| scored_point.id)
.collect();
// Collect retrieved records into a hashmap for fast lookup
let records_map = tokio::time::timeout(
timeout,
SegmentsSearcher::retrieve(
self.segments.clone(),
&point_ids,
&(&with_payload).into(),
&with_vector,
&self.search_runtime,
),
)
.await
.map_err(|_: Elapsed| CollectionError::timeout(timeout.as_secs() as usize, "retrieve"))??;
// It might be possible, that we won't find all records,
// so we need to re-collect the results
let query_response: Vec<_> = query_response
.into_iter()
.filter_map(|mut point| {
records_map.get(&point.id).map(|record| {
point.payload.clone_from(&record.payload);
point.vector.clone_from(&record.vector);
point
})
})
.collect();
Ok(query_response)
}
fn recurse_prefetch<'shard, 'query>(
&'shard self,
merge_plan: MergePlan,
prefetch_holder: &'query PrefetchResults,
search_runtime_handle: &'shard Handle,
timeout: Duration,
depth: usize,
hw_counter_acc: &HwMeasurementAcc,
) -> BoxFuture<'query, CollectionResult<Vec<Vec<ScoredPoint>>>>
where
'shard: 'query,
{
let hw_collector = hw_counter_acc.new_collector();
async move {
let start_time = std::time::Instant::now();
let max_len = merge_plan.sources.len();
let mut sources = Vec::with_capacity(max_len);
// We need to preserve the order of the sources for some fusion strategies
for source in merge_plan.sources {
match source {
Source::SearchesIdx(idx) => {
sources.push(prefetch_holder.get(FetchedSource::Search(idx))?)
}
Source::ScrollsIdx(idx) => {
sources.push(prefetch_holder.get(FetchedSource::Scroll(idx))?)
}
Source::Prefetch(prefetch) => {
let merged = self
.recurse_prefetch(
*prefetch,
prefetch_holder,
search_runtime_handle,
timeout,
depth + 1,
&hw_collector,
)
.await?
.into_iter();
sources.extend(merged);
}
}
}
// decrease timeout by the time spent so far (recursive calls)
let timeout = timeout.saturating_sub(start_time.elapsed());
// Rescore or return plain sources
if let Some(rescore_params) = merge_plan.rescore_params {
let rescored = self
.rescore(
sources,
rescore_params,
search_runtime_handle,
timeout,
&hw_collector,
)
.await?;
Ok(vec![rescored])
} else {
// The sources here are passed to the next layer without any extra processing.
// It is either a query without prefetches, or a fusion request and the intermediate results are passed to the next layer.
debug_assert_eq!(depth, 0);
Ok(sources)
}
}
.boxed()
}
/// Rescore list of scored points
async fn rescore<'a>(
&self,
sources: Vec<Vec<ScoredPoint>>,
rescore_params: RescoreParams,
search_runtime_handle: &Handle,
timeout: Duration,
hw_counter_acc: &HwMeasurementAcc,
) -> CollectionResult<Vec<ScoredPoint>> {
let RescoreParams {
rescore,
score_threshold,
limit,
with_vector,
with_payload,
params,
} = rescore_params;
match rescore {
ScoringQuery::Fusion(fusion) => {
self.fusion_rescore(
sources.into_iter(),
fusion,
score_threshold,
limit,
with_payload,
with_vector,
timeout,
)
.await
}
ScoringQuery::OrderBy(order_by) => {
// create single scroll request for rescoring query
let filter = filter_with_sources_ids(sources.into_iter());
// Note: score_threshold is not used in this case, as all results will have same score,
// but different order_value
let scroll_request = QueryScrollRequestInternal {
limit,
filter: Some(filter),
with_payload,
with_vector,
scroll_order: ScrollOrder::ByField(order_by),
};
self.query_scroll_batch(
Arc::new(vec![scroll_request]),
search_runtime_handle,
timeout,
)
.await?
.pop()
.ok_or_else(|| {
CollectionError::service_error(
"Rescoring with order-by query didn't return expected batch of results",
)
})
}
ScoringQuery::Vector(query_enum) => {
// create single search request for rescoring query
let filter = filter_with_sources_ids(sources.into_iter());
let search_request = CoreSearchRequest {
query: query_enum,
filter: Some(filter),
params,
limit,
offset: 0,
with_payload: Some(with_payload),
with_vector: Some(with_vector),
score_threshold,
};
let rescoring_core_search_request = CoreSearchRequestBatch {
searches: vec![search_request],
};
self.do_search(
Arc::new(rescoring_core_search_request),
search_runtime_handle,
Some(timeout),
hw_counter_acc,
)
.await?
// One search request is sent. We expect only one result
.pop()
.ok_or_else(|| {
CollectionError::service_error(
"Rescoring with vector(s) query didn't return expected batch of results",
)
})
}
ScoringQuery::Sample(sample) => match sample {
SampleInternal::Random => {
// create single scroll request for rescoring query
let filter = filter_with_sources_ids(sources.into_iter());
// Note: score_threshold is not used in this case, as all results will have same score and order_value
let scroll_request = QueryScrollRequestInternal {
limit,
filter: Some(filter),
with_payload,
with_vector,
scroll_order: ScrollOrder::Random,
};
self.query_scroll_batch(
Arc::new(vec![scroll_request]),
search_runtime_handle,
timeout,
)
.await?
.pop()
.ok_or_else(|| {
CollectionError::service_error(
"Rescoring with order-by query didn't return expected batch of results",
)
})
}
},
}
}
#[allow(clippy::too_many_arguments)]
async fn fusion_rescore<'a>(
&self,
sources: impl Iterator<Item = Vec<ScoredPoint>>,
fusion: FusionInternal,
score_threshold: Option<f32>,
limit: usize,
with_payload: WithPayloadInterface,
with_vector: WithVector,
timeout: Duration,
) -> Result<Vec<ScoredPoint>, CollectionError> {
let fused = match fusion {
FusionInternal::Rrf => rrf_scoring(sources),
FusionInternal::Dbsf => score_fusion(sources, ScoreFusion::dbsf()),
};
let top_fused: Vec<_> = if let Some(score_threshold) = score_threshold {
fused
.into_iter()
.take_while(|point| point.score >= score_threshold)
.take(limit)
.collect()
} else {
fused.into_iter().take(limit).collect()
};
let filled_top_fused = self
.fill_with_payload_or_vectors(top_fused, with_payload, with_vector, timeout)
.await?;
Ok(filled_top_fused)
}
}
/// Extracts point ids from sources, and creates a filter to only include those ids.
fn filter_with_sources_ids(sources: impl Iterator<Item = Vec<ScoredPoint>>) -> Filter {
let mut point_ids = HashSet::new();
for source in sources {
for point in source.iter() {
point_ids.insert(point.id);
}
}
// create filter for target point ids
Filter::new_must(segment::types::Condition::HasId(HasIdCondition::from(
point_ids,
)))
}
|