File size: 16,214 Bytes
84d2a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
use std::sync::atomic::{AtomicBool, AtomicU64, Ordering};
use std::sync::Arc;

#[derive(Clone, Debug, Default)]
pub struct ClockSet {
    clocks: Vec<Arc<Clock>>,
}

impl ClockSet {
    pub fn new() -> Self {
        Self::default()
    }

    /// Get the first available clock from the set, or create a new one.
    pub fn get_clock(&mut self) -> ClockGuard {
        for (id, clock) in self.clocks.iter().enumerate() {
            if clock.try_lock() {
                return ClockGuard::new(id as u32, clock.clone());
            }
        }

        let id = self.clocks.len() as u32;
        let clock = Arc::new(Clock::new_locked());

        self.clocks.push(clock.clone());

        ClockGuard::new(id, clock)
    }
}

#[derive(Debug)]
pub struct ClockGuard {
    id: u32,
    clock: Arc<Clock>,
}

impl ClockGuard {
    fn new(id: u32, clock: Arc<Clock>) -> Self {
        Self { id, clock }
    }

    pub fn id(&self) -> u32 {
        self.id
    }

    /// Return current clock tick.
    pub fn current_tick(&self) -> Option<u64> {
        self.clock.current_tick()
    }

    /// Advance clock by a single tick and return current tick.
    #[must_use = "new clock value must be used"]
    pub fn tick_once(&mut self) -> u64 {
        self.clock.tick_once()
    }

    /// Advance clock to `new_tick`, if `new_tick` is newer than current tick.
    pub fn advance_to(&mut self, new_tick: u64) {
        self.clock.advance_to(new_tick)
    }
}

impl Drop for ClockGuard {
    fn drop(&mut self) {
        self.clock.release();
    }
}

#[derive(Debug)]
struct Clock {
    /// Tracks the *next* clock tick
    next_tick: AtomicU64,
    available: AtomicBool,
}

impl Clock {
    fn new_locked() -> Self {
        Self {
            next_tick: 0.into(),
            available: false.into(),
        }
    }

    /// Return current clock tick.
    fn current_tick(&self) -> Option<u64> {
        let next_tick = self.next_tick.load(Ordering::Relaxed);
        next_tick.checked_sub(1)
    }

    /// Advance clock by a single tick and return current tick.
    ///
    /// # Thread safety
    ///
    /// Clock *has to* be locked (using [`Clock::lock`]) before calling `tick_once`!
    #[must_use = "new clock tick value must be used"]
    fn tick_once(&self) -> u64 {
        // `Clock` tracks *next* tick, so we increment `next_tick` by 1 and return *previous* value
        // of `next_tick` (which is *exactly* what `fetch_add(1)` does)
        let current_tick = self.next_tick.fetch_add(1, Ordering::Relaxed);

        // If `current_tick` is `0`, then "revert" `next_tick` back to `0`.
        // We expect that `advance_to` would be used to advance "past" the initial `0`.
        //
        // Executing multiple atomic operations sequentially is not strictly thread-safe,
        // but we expect that `Clock` would be "locked" before calling `tick_once`.
        if current_tick == 0 {
            self.next_tick.store(0, Ordering::Relaxed);
        }

        current_tick
    }

    /// Advance clock to `new_tick`, if `new_tick` is newer than current tick.
    fn advance_to(&self, new_tick: u64) {
        // `Clock` tracks *next* tick, so if we want to advance *current* tick to `new_tick`,
        // we have to advance `next_tick` to `new_tick + 1`
        self.next_tick.fetch_max(new_tick + 1, Ordering::Relaxed);
    }

    /// Try to acquire exclusive lock over this clock.
    ///
    /// Returns `true` if the lock was successfully acquired, or `false` if the clock is already
    /// locked.
    fn try_lock(&self) -> bool {
        self.available.swap(false, Ordering::Relaxed)
    }

    /// Release the exclusive lock over this clock.
    ///
    /// No-op if the clock is not locked.
    fn release(&self) {
        self.available.store(true, Ordering::Relaxed);
    }
}

#[cfg(test)]
mod tests {
    use std::iter;

    use rand::prelude::*;

    use super::*;

    /// Tick a single clock, it should increment after we advance it from 0 (or higher).
    #[test]
    fn test_clock_set_single_tick() {
        let mut clock_set = ClockSet::new();

        // Don't tick from 0 unless we explicitly advance
        assert_eq!(clock_set.get_clock().tick_once(), 0);
        assert_eq!(clock_set.get_clock().tick_once(), 0);
        assert_eq!(clock_set.get_clock().tick_once(), 0);

        clock_set.get_clock().advance_to(0);

        // Following ticks should increment
        assert_eq!(clock_set.get_clock().tick_once(), 1);
        assert_eq!(clock_set.get_clock().tick_once(), 2);
        assert_eq!(clock_set.get_clock().tick_once(), 3);
        assert_eq!(clock_set.get_clock().tick_once(), 4);
    }

    /// Test a single clock, but tick it multiple times on the same guard.
    #[test]
    fn test_clock_set_single_tick_twice() {
        let mut clock_set = ClockSet::new();

        // Don't tick from 0 unless we explicitly advance
        {
            let mut clock = clock_set.get_clock();
            assert_eq!(clock.tick_once(), 0);
            assert_eq!(clock.tick_once(), 0);
            clock.advance_to(0);
        }

        // Following ticks should increment
        {
            let mut clock = clock_set.get_clock();
            assert_eq!(clock.tick_once(), 1);
            assert_eq!(clock.tick_once(), 2);
            assert_eq!(clock.tick_once(), 3);
            assert_eq!(clock.tick_once(), 4);
        }
    }

    /// Advance a clock to a higher number, which should increase it.
    #[test]
    fn test_clock_set_single_advance_high() {
        let mut clock_set = ClockSet::new();

        // Bring the clock up to 4
        assert_eq!(clock_set.get_clock().tick_once(), 0);
        clock_set.get_clock().advance_to(0);
        assert_eq!(clock_set.get_clock().tick_once(), 1);
        assert_eq!(clock_set.get_clock().tick_once(), 2);
        assert_eq!(clock_set.get_clock().tick_once(), 3);
        assert_eq!(clock_set.get_clock().tick_once(), 4);

        // If we advance to 100, we should continue from 101
        clock_set.get_clock().advance_to(100);
        assert_eq!(clock_set.get_clock().tick_once(), 101);
    }

    /// Advance a clock to a lower number, which should not do anything.
    #[test]
    fn test_clock_set_single_advance_low() {
        let mut clock_set = ClockSet::new();

        // Bring the clock up to 4
        assert_eq!(clock_set.get_clock().tick_once(), 0);
        clock_set.get_clock().advance_to(0);
        assert_eq!(clock_set.get_clock().tick_once(), 1);
        assert_eq!(clock_set.get_clock().tick_once(), 2);
        assert_eq!(clock_set.get_clock().tick_once(), 3);
        assert_eq!(clock_set.get_clock().tick_once(), 4);

        // If we advance to a low number, just continue
        clock_set.get_clock().advance_to(0);
        assert_eq!(clock_set.get_clock().tick_once(), 5);

        clock_set.get_clock().advance_to(1);
        assert_eq!(clock_set.get_clock().tick_once(), 6);
    }

    /// Test multiple clocks in various configurations.
    #[test]
    fn test_clock_multi_tick() {
        let mut clock_set = ClockSet::new();

        // 2 parallel operations, that fails and doesn't advance
        {
            let mut clock1 = clock_set.get_clock();
            let mut clock2 = clock_set.get_clock();
            assert_eq!(clock1.tick_once(), 0);
            assert_eq!(clock2.tick_once(), 0);
        }

        // 2 parallel operations
        {
            let mut clock1 = clock_set.get_clock();
            let mut clock2 = clock_set.get_clock();
            assert_eq!(clock1.tick_once(), 0);
            assert_eq!(clock2.tick_once(), 0);
            clock1.advance_to(0);
            clock2.advance_to(0);
        }

        // 1 operation
        {
            let mut clock1 = clock_set.get_clock();
            assert_eq!(clock1.tick_once(), 1);
            clock1.advance_to(1);
        }

        // 1 operation, without advancing should still tick
        {
            let mut clock1 = clock_set.get_clock();
            assert_eq!(clock1.tick_once(), 2);
        }

        // 2 parallel operations
        {
            let mut clock1 = clock_set.get_clock();
            let mut clock2 = clock_set.get_clock();
            assert_eq!(clock1.tick_once(), 3);
            assert_eq!(clock2.tick_once(), 1);
            clock1.advance_to(3);
            clock2.advance_to(1);
        }

        // 3 parallel operations, but clock 2 was much newer on some node
        {
            let mut clock1 = clock_set.get_clock();
            let mut clock2 = clock_set.get_clock();
            let mut clock3 = clock_set.get_clock();
            assert_eq!(clock1.tick_once(), 4);
            assert_eq!(clock2.tick_once(), 2);
            assert_eq!(clock3.tick_once(), 0);
            clock1.advance_to(4);
            clock2.advance_to(10);
            clock3.advance_to(0);
        }

        // 3 parallel operations, advancing in a different order should not matter
        {
            let mut clock1 = clock_set.get_clock();
            let mut clock2 = clock_set.get_clock();
            let mut clock3 = clock_set.get_clock();
            assert_eq!(clock1.tick_once(), 5);
            assert_eq!(clock2.tick_once(), 11);
            assert_eq!(clock3.tick_once(), 1);
            clock3.advance_to(1);
            clock2.advance_to(11);
            clock1.advance_to(5);
        }

        // 3 parallel operations, advancing just some should still tick all
        {
            let mut clock1 = clock_set.get_clock();
            let mut clock2 = clock_set.get_clock();
            let mut clock3 = clock_set.get_clock();
            assert_eq!(clock1.tick_once(), 6);
            assert_eq!(clock2.tick_once(), 12);
            assert_eq!(clock3.tick_once(), 2);
            clock2.advance_to(12);
        }

        // 1 operation
        {
            let mut clock1 = clock_set.get_clock();
            assert_eq!(clock1.tick_once(), 7);
        }

        // Test final state of all clocks
        {
            let mut clock1 = clock_set.get_clock();
            let mut clock2 = clock_set.get_clock();
            let mut clock3 = clock_set.get_clock();
            let mut clock4 = clock_set.get_clock();
            assert_eq!(clock1.tick_once(), 8);
            assert_eq!(clock2.tick_once(), 13);
            assert_eq!(clock3.tick_once(), 3);
            assert_eq!(clock4.tick_once(), 0);
        }
    }

    /// Test a number of parallel operations with some running for a long time. Clocks are resolved
    /// unordered.
    #[test]
    fn test_clock_set_long_running_unordered() {
        let mut clock_set = ClockSet::new();

        // Clock 1 runs for a long while
        let mut clock1 = clock_set.get_clock();
        assert_eq!(clock1.tick_once(), 0);

        // 2 quick parallel operations
        {
            let mut clock2 = clock_set.get_clock();
            let mut clock3 = clock_set.get_clock();
            assert_eq!(clock2.tick_once(), 0);
            assert_eq!(clock3.tick_once(), 0);
            clock2.advance_to(0);
            clock3.advance_to(0);
        }

        // Clock 2 runs for a long while
        let clock2 = clock_set.get_clock();
        assert_eq!(clock1.tick_once(), 0);

        // 2 quick parallel operations
        {
            let mut clock3 = clock_set.get_clock();
            let mut clock4 = clock_set.get_clock();
            assert_eq!(clock3.tick_once(), 1);
            assert_eq!(clock4.tick_once(), 0);
            clock4.advance_to(0);
        }

        // Clock 1 finally resolves
        clock1.advance_to(0);
        drop(clock1);

        // 3 quick parallel operations
        {
            let mut clock1 = clock_set.get_clock();
            let mut clock3 = clock_set.get_clock();
            let mut clock4 = clock_set.get_clock();
            assert_eq!(clock1.tick_once(), 1);
            assert_eq!(clock3.tick_once(), 2);
            assert_eq!(clock4.tick_once(), 1);
        }

        // Clock 2 finally resolves
        drop(clock2);

        // Test final state of all clocks
        {
            let mut clock1 = clock_set.get_clock();
            let mut clock2 = clock_set.get_clock();
            let mut clock3 = clock_set.get_clock();
            let mut clock4 = clock_set.get_clock();
            let mut clock5 = clock_set.get_clock();
            assert_eq!(clock1.tick_once(), 2);
            assert_eq!(clock2.tick_once(), 1);
            assert_eq!(clock3.tick_once(), 3);
            assert_eq!(clock4.tick_once(), 2);
            assert_eq!(clock5.tick_once(), 0);
        }
    }

    /// Test and increment a lot of clocks, but at some point 10% of the clocks gets stuck.
    #[test]
    fn test_clock_set_many() {
        const N: usize = 5000;

        let mut clock_set = ClockSet::new();

        // Tick all clocks past 0
        {
            let mut clocks = iter::repeat_with(|| clock_set.get_clock())
                .take(N)
                .collect::<Vec<_>>();
            clocks.shuffle(&mut rand::thread_rng());

            for clock in &mut clocks {
                assert_eq!(clock.tick_once(), 0);
                clock.advance_to(0);
            }
        }

        // Tick all clocks 10 times
        {
            for tick in 0..10 {
                let mut clocks = iter::repeat_with(|| clock_set.get_clock())
                    .take(N)
                    .collect::<Vec<_>>();
                clocks.shuffle(&mut rand::thread_rng());

                for clock in &mut clocks {
                    assert_eq!(clock.tick_once(), 1 + tick);
                }
            }
        }

        // Now the first 10% gets stuck
        let mut stuck_clocks = iter::repeat_with(|| clock_set.get_clock())
            .take(N / 10)
            .collect::<Vec<_>>();
        for clock in stuck_clocks.iter_mut() {
            assert_eq!(clock.tick_once(), 11);
        }

        // Tick all other clocks 10 times
        {
            for tick in 0..10 {
                let mut clocks = iter::repeat_with(|| clock_set.get_clock())
                    .take(N - (N / 10))
                    .collect::<Vec<_>>();
                clocks.shuffle(&mut rand::thread_rng());

                for clock in clocks.iter_mut() {
                    assert_eq!(clock.tick_once(), 11 + tick);
                }
            }
        }

        // All stuck clocks resolve
        drop(stuck_clocks);

        // Test all clocks
        {
            let mut stuck_clocks = iter::repeat_with(|| clock_set.get_clock())
                .take(N / 10)
                .collect::<Vec<_>>();
            let mut clocks = iter::repeat_with(|| clock_set.get_clock())
                .take(N - (N / 10))
                .collect::<Vec<_>>();

            for clock in stuck_clocks.iter_mut() {
                assert_eq!(clock.tick_once(), 12);
            }
            for clock in clocks.iter_mut() {
                assert_eq!(clock.tick_once(), 21);
            }
        }
    }

    /// Test and increment a lot of clocks, but each iteration, we get on more clock stuck.
    #[test]
    fn test_clock_set_many_staggered_stuck() {
        const N: usize = 500;

        let mut clock_set = ClockSet::new();

        let mut stuck_clocks = Vec::new();

        for i in 0..N {
            let mut clock_to_stuck = clock_set.get_clock();
            let mut clocks = iter::repeat_with(|| clock_set.get_clock())
                .take(N - i - 1)
                .collect::<Vec<_>>();

            if clock_to_stuck.tick_once() == 0 {
                clock_to_stuck.advance_to(0);
            }

            for clock in clocks.iter_mut() {
                if clock.tick_once() == 0 {
                    clock.advance_to(0);
                }
            }

            stuck_clocks.push(clock_to_stuck);
        }

        // All stuck clocks resolve now
        drop(stuck_clocks);

        // Test all clocks
        {
            let mut clocks = iter::repeat_with(|| clock_set.get_clock())
                .take(N)
                .enumerate()
                .collect::<Vec<_>>();

            for (i, clock) in clocks.iter_mut() {
                assert_eq!(clock.tick_once(), *i as u64 + 1);
            }
        }
    }
}