Spaces:
Build error
Build error
File size: 8,689 Bytes
84d2a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
#[cfg(not(target_os = "windows"))]
mod prof;
use common::types::PointOffsetType;
use criterion::{criterion_group, criterion_main, Criterion};
use itertools::Itertools;
use rand::{thread_rng, Rng};
use segment::data_types::vectors::VectorElementType;
use segment::fixtures::index_fixtures::{random_vector, FakeFilterContext, TestRawScorerProducer};
use segment::index::hnsw_index::graph_layers::GraphLayers;
use segment::index::hnsw_index::graph_layers_builder::GraphLayersBuilder;
use segment::index::hnsw_index::graph_links::GraphLinksRam;
use segment::index::hnsw_index::point_scorer::FilteredScorer;
use segment::spaces::metric::Metric;
use segment::spaces::simple::{CosineMetric, DotProductMetric};
use segment::vector_storage::chunked_vector_storage::VectorOffsetType;
const NUM_VECTORS: usize = 5_000;
const DIM: usize = 16;
const M: usize = 16;
const TOP: usize = 10;
const EF_CONSTRUCT: usize = 64;
const EF: usize = 64;
const USE_HEURISTIC: bool = true;
fn build_index<TMetric: Metric<VectorElementType>>(
num_vectors: usize,
) -> (TestRawScorerProducer<TMetric>, GraphLayers<GraphLinksRam>) {
let mut rng = thread_rng();
let vector_holder = TestRawScorerProducer::<TMetric>::new(DIM, num_vectors, &mut rng);
let mut graph_layers_builder =
GraphLayersBuilder::new(num_vectors, M, M * 2, EF_CONSTRUCT, 10, USE_HEURISTIC);
let fake_filter_context = FakeFilterContext {};
for idx in 0..(num_vectors as PointOffsetType) {
let added_vector = vector_holder.vectors.get(idx as VectorOffsetType).to_vec();
let raw_scorer = vector_holder.get_raw_scorer(added_vector).unwrap();
let scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
let level = graph_layers_builder.get_random_layer(&mut rng);
graph_layers_builder.set_levels(idx, level);
graph_layers_builder.link_new_point(idx, scorer);
}
(
vector_holder,
graph_layers_builder.into_graph_layers(None).unwrap(),
)
}
fn hnsw_build_asymptotic(c: &mut Criterion) {
let mut group = c.benchmark_group("hnsw-index-build-asymptotic");
let mut rng = thread_rng();
let (vector_holder, graph_layers) = build_index::<CosineMetric>(NUM_VECTORS);
group.bench_function("build-n-search-hnsw", |b| {
b.iter(|| {
let fake_filter_context = FakeFilterContext {};
let query = random_vector(&mut rng, DIM);
let raw_scorer = vector_holder.get_raw_scorer(query).unwrap();
let scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
graph_layers.search(TOP, EF, scorer, None);
})
});
for _ in 0..10 {
let fake_filter_context = FakeFilterContext {};
let query = random_vector(&mut rng, DIM);
let raw_scorer = vector_holder.get_raw_scorer(query).unwrap();
let scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
graph_layers.search(TOP, EF, scorer, None);
}
let (vector_holder, graph_layers) = build_index::<CosineMetric>(NUM_VECTORS * 10);
group.bench_function("build-n-search-hnsw-10x", |b| {
b.iter(|| {
let fake_filter_context = FakeFilterContext {};
let query = random_vector(&mut rng, DIM);
let raw_scorer = vector_holder.get_raw_scorer(query).unwrap();
let scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
graph_layers.search(TOP, EF, scorer, None);
})
});
group.bench_function("build-n-search-hnsw-10x-score-point", |b| {
b.iter(|| {
let fake_filter_context = FakeFilterContext {};
let query = random_vector(&mut rng, DIM);
let raw_scorer = vector_holder.get_raw_scorer(query).unwrap();
let mut scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
let mut points_to_score = (0..1500)
.map(|_| rng.gen_range(0..(NUM_VECTORS * 10)) as u32)
.collect_vec();
scorer.score_points(&mut points_to_score, 1000);
})
});
for _ in 0..10 {
let fake_filter_context = FakeFilterContext {};
let query = random_vector(&mut rng, DIM);
let raw_scorer = vector_holder.get_raw_scorer(query).unwrap();
let scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
graph_layers.search(TOP, EF, scorer, None);
}
}
fn scoring_vectors(c: &mut Criterion) {
let mut group = c.benchmark_group("scoring-vector");
let mut rng = thread_rng();
let points_per_cycle = 1000;
let base_num_vectors = 10_000;
let num_vectors = base_num_vectors;
let vector_holder = TestRawScorerProducer::<DotProductMetric>::new(DIM, num_vectors, &mut rng);
group.bench_function("score-point", |b| {
b.iter(|| {
let fake_filter_context = FakeFilterContext {};
let query = random_vector(&mut rng, DIM);
let raw_scorer = vector_holder.get_raw_scorer(query).unwrap();
let mut scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
let mut points_to_score = (0..points_per_cycle)
.map(|_| rng.gen_range(0..num_vectors) as u32)
.collect_vec();
scorer.score_points(&mut points_to_score, points_per_cycle);
})
});
let num_vectors = base_num_vectors * 10;
let vector_holder = TestRawScorerProducer::<DotProductMetric>::new(DIM, num_vectors, &mut rng);
group.bench_function("score-point-10x", |b| {
b.iter(|| {
let fake_filter_context = FakeFilterContext {};
let query = random_vector(&mut rng, DIM);
let raw_scorer = vector_holder.get_raw_scorer(query).unwrap();
let mut scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
let mut points_to_score = (0..points_per_cycle)
.map(|_| rng.gen_range(0..num_vectors) as u32)
.collect_vec();
scorer.score_points(&mut points_to_score, points_per_cycle);
})
});
let num_vectors = base_num_vectors * 50;
let vector_holder = TestRawScorerProducer::<DotProductMetric>::new(DIM, num_vectors, &mut rng);
group.bench_function("score-point-50x", |b| {
b.iter(|| {
let fake_filter_context = FakeFilterContext {};
let query = random_vector(&mut rng, DIM);
let raw_scorer = vector_holder.get_raw_scorer(query).unwrap();
let mut scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
let mut points_to_score = (0..points_per_cycle)
.map(|_| rng.gen_range(0..num_vectors) as u32)
.collect_vec();
scorer.score_points(&mut points_to_score, points_per_cycle);
})
});
}
fn basic_scoring_vectors(c: &mut Criterion) {
let mut group = c.benchmark_group("scoring-vector");
let mut rng = thread_rng();
let points_per_cycle = 1000;
let base_num_vectors = 10_000_000;
let num_vectors = base_num_vectors;
let vectors = (0..num_vectors)
.map(|_| random_vector(&mut rng, DIM))
.collect_vec();
group.bench_function("basic-score-point", |b| {
b.iter(|| {
let query = random_vector(&mut rng, DIM);
let points_to_score = (0..points_per_cycle).map(|_| rng.gen_range(0..num_vectors));
let _s: f32 = points_to_score
.map(|x| DotProductMetric::similarity(&vectors[x], &query))
.sum();
})
});
let num_vectors = base_num_vectors * 2;
let vectors = (0..num_vectors)
.map(|_| random_vector(&mut rng, DIM))
.collect_vec();
group.bench_function("basic-score-point-10x", |b| {
b.iter(|| {
let query = random_vector(&mut rng, DIM);
let points_to_score = (0..points_per_cycle).map(|_| rng.gen_range(0..num_vectors));
let _s: f32 = points_to_score
.map(|x| DotProductMetric::similarity(&vectors[x], &query))
.sum();
})
});
}
#[cfg(not(target_os = "windows"))]
criterion_group! {
name = benches;
config = Criterion::default().with_profiler(prof::FlamegraphProfiler::new(100));
targets = hnsw_build_asymptotic, scoring_vectors, basic_scoring_vectors
}
#[cfg(target_os = "windows")]
criterion_group! {
name = benches;
config = Criterion::default();
targets = hnsw_build_asymptotic, scoring_vectors, basic_scoring_vectors
}
criterion_main!(benches);
|