File size: 8,986 Bytes
84d2a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
use std::sync::atomic::AtomicBool;

use common::types::PointOffsetType;
use criterion::{criterion_group, criterion_main, BatchSize, Criterion};
use dataset::Dataset;
use indicatif::{ProgressBar, ProgressDrawTarget, ProgressStyle};
use itertools::Itertools as _;
use rand::rngs::StdRng;
use rand::SeedableRng;
use segment::fixtures::sparse_fixtures::fixture_sparse_index_from_iter;
use segment::index::sparse_index::sparse_index_config::{SparseIndexConfig, SparseIndexType};
use segment::index::sparse_index::sparse_vector_index::{
    SparseVectorIndex, SparseVectorIndexOpenArgs,
};
use segment::index::{PayloadIndex, VectorIndex};
use segment::types::PayloadSchemaType::Keyword;
use segment::types::{Condition, FieldCondition, Filter, Payload};
use serde_json::json;
use sparse::common::sparse_vector::SparseVector;
use sparse::common::sparse_vector_fixture::{random_positive_sparse_vector, random_sparse_vector};
use sparse::index::inverted_index::inverted_index_compressed_mmap::InvertedIndexCompressedMmap;
use sparse::index::inverted_index::inverted_index_ram::InvertedIndexRam;
use sparse::index::loaders::Csr;
use tempfile::Builder;

#[cfg(not(target_os = "windows"))]
mod prof;

const NUM_VECTORS: usize = 50_000;
const MAX_SPARSE_DIM: usize = 30_000;
const NUM_QUERIES: usize = 2048;
const TOP: usize = 10;
const FULL_SCAN_THRESHOLD: usize = 1; // low value to trigger index usage by default

fn sparse_vector_index_search_benchmark(c: &mut Criterion) {
    let mut rnd = StdRng::seed_from_u64(0);
    let query_vectors = (0..NUM_QUERIES)
        // Positive values to test pruning.
        .map(|_| random_positive_sparse_vector(&mut rnd, MAX_SPARSE_DIM))
        .collect::<Vec<_>>();

    let mut rnd = StdRng::seed_from_u64(42);
    let random_vectors = (0..NUM_VECTORS).map(|_| random_sparse_vector(&mut rnd, MAX_SPARSE_DIM));
    sparse_vector_index_search_benchmark_impl(c, "random-50k", random_vectors, &query_vectors);

    let dataset_vectors = Csr::open(Dataset::NeurIps2023_1M.download().unwrap()).unwrap();
    let query_vectors = Csr::open(Dataset::NeurIps2023Queries.download().unwrap())
        .unwrap()
        .iter()
        .map(|v| v.unwrap())
        .collect_vec();
    sparse_vector_index_search_benchmark_impl(
        c,
        "neurips2023-1M",
        dataset_vectors.iter().map(|v| v.unwrap()),
        &query_vectors,
    );
}

fn sparse_vector_index_search_benchmark_impl(
    c: &mut Criterion,
    group: &str,
    vectors: impl ExactSizeIterator<Item = SparseVector>,
    query_vectors: &[SparseVector],
) {
    let mut group = c.benchmark_group(format!("sparse_vector_index_search/{group}"));
    group.sample_size(10);

    let vectors_len = vectors.len();

    let stopped = AtomicBool::new(false);

    let data_dir = Builder::new().prefix("data_dir").tempdir().unwrap();

    let sparse_vector_index = fixture_sparse_index_from_iter::<InvertedIndexRam>(
        data_dir.path(),
        progress("Indexing (1/2)", vectors_len).wrap_iter(vectors),
        FULL_SCAN_THRESHOLD,
        SparseIndexType::MutableRam,
    )
    .unwrap();

    // adding payload on field
    let field_name = "field";
    let field_value = "important value";
    let payload: Payload = json!({
        field_name: field_value,
    })
    .into();

    // all points have the same payload
    let mut payload_index = sparse_vector_index.payload_index().borrow_mut();
    for idx in 0..NUM_VECTORS {
        payload_index
            .set_payload(idx as PointOffsetType, &payload, &None)
            .unwrap();
    }
    drop(payload_index);

    let mut query_vector_it = query_vectors.iter().cycle();

    // mmap inverted index
    let mmap_index_dir = Builder::new().prefix("mmap_index_dir").tempdir().unwrap();
    let sparse_index_config =
        SparseIndexConfig::new(Some(FULL_SCAN_THRESHOLD), SparseIndexType::Mmap, None);
    let pb = progress("Indexing (2/2)", vectors_len);
    let sparse_vector_index_mmap: SparseVectorIndex<InvertedIndexCompressedMmap<f32>> =
        SparseVectorIndex::open(SparseVectorIndexOpenArgs {
            config: sparse_index_config,
            id_tracker: sparse_vector_index.id_tracker().clone(),
            vector_storage: sparse_vector_index.vector_storage().clone(),
            payload_index: sparse_vector_index.payload_index().clone(),
            path: mmap_index_dir.path(),
            stopped: &stopped,
            tick_progress: || pb.inc(1),
        })
        .unwrap();
    pb.finish_and_clear();
    assert_eq!(sparse_vector_index_mmap.indexed_vector_count(), vectors_len);

    // intent: bench `search` without filter on mmap inverted index
    group.bench_function("mmap-inverted-index-search", |b| {
        b.iter_batched(
            || query_vector_it.next().unwrap().clone().into(),
            |vec| {
                let results = sparse_vector_index_mmap
                    .search(&[&vec], None, TOP, None, &Default::default())
                    .unwrap();

                assert_eq!(results[0].len(), TOP);
            },
            BatchSize::SmallInput,
        )
    });

    // intent: bench `search` without filter
    group.bench_function("inverted-index-search", |b| {
        b.iter_batched(
            || query_vector_it.next().unwrap().clone().into(),
            |vec| {
                let results = sparse_vector_index
                    .search(&[&vec], None, TOP, None, &Default::default())
                    .unwrap();

                assert_eq!(results[0].len(), TOP);
            },
            BatchSize::SmallInput,
        )
    });

    // filter by field
    let filter = Filter::new_must(Condition::Field(FieldCondition::new_match(
        field_name.parse().unwrap(),
        field_value.to_owned().into(),
    )));

    // intent: bench plain search when the filtered payload key is not indexed
    if vectors_len < 100_000 {
        group.bench_function("inverted-index-filtered-plain", |b| {
            b.iter_batched(
                || query_vector_it.next().unwrap(),
                |vec| {
                    let mut prefiltered_points = None;
                    let results = sparse_vector_index
                        .search_plain(
                            vec,
                            &filter,
                            TOP,
                            &mut prefiltered_points,
                            &Default::default(),
                        )
                        .unwrap();

                    assert_eq!(results.len(), TOP);
                },
                BatchSize::SmallInput,
            )
        });
    }

    let mut payload_index = sparse_vector_index.payload_index().borrow_mut();

    // create payload field index
    payload_index
        .set_indexed(&field_name.parse().unwrap(), Keyword)
        .unwrap();

    drop(payload_index);

    // intent: bench `search` when the filtered payload key is indexed
    group.bench_function("inverted-index-filtered-payload-index", |b| {
        b.iter_batched(
            || query_vector_it.next().unwrap().clone().into(),
            |vec| {
                let results = sparse_vector_index
                    .search(&[&vec], Some(&filter), TOP, None, &Default::default())
                    .unwrap();

                assert_eq!(results[0].len(), TOP);
            },
            BatchSize::SmallInput,
        );
    });

    // intent: bench plain search when the filtered payload key is indexed
    if vectors_len < 100_000 {
        group.bench_function("plain-filtered-payload-index", |b| {
            b.iter_batched(
                || query_vector_it.next().unwrap(),
                |vec| {
                    let mut prefiltered_points = None;
                    let results = sparse_vector_index
                        .search_plain(
                            vec,
                            &filter,
                            TOP,
                            &mut prefiltered_points,
                            &Default::default(),
                        )
                        .unwrap();

                    assert_eq!(results.len(), TOP);
                },
                BatchSize::SmallInput,
            )
        });
    }

    group.finish();
}

fn progress(name: &str, len: usize) -> ProgressBar {
    let pb =
        ProgressBar::with_draw_target(Some(len as u64), ProgressDrawTarget::stderr_with_hz(12));
    pb.set_style(
        ProgressStyle::default_bar()
            .template("{msg} {wide_bar} {pos}/{len} (eta:{eta})")
            .unwrap(),
    );
    pb.set_message(name.to_owned());
    pb
}

#[cfg(not(target_os = "windows"))]
criterion_group! {
    name = benches;
    config = Criterion::default().with_profiler(prof::FlamegraphProfiler::new(100));
    targets = sparse_vector_index_search_benchmark
}

#[cfg(target_os = "windows")]
criterion_group! {
    name = benches;
    config = Criterion::default();
    targets = sparse_vector_index_search_benchmark,
}

criterion_main!(benches);