File size: 17,222 Bytes
84d2a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
use std::borrow::Cow;
use std::cmp::max;
use std::path::{Path, PathBuf};

use common::fixed_length_priority_queue::FixedLengthPriorityQueue;
use common::types::{PointOffsetType, ScoredPointOffset};
use io::file_operations::{atomic_save_bin, read_bin, FileStorageError};
use itertools::Itertools;
use memory::mmap_ops;
use serde::{Deserialize, Serialize};

use super::entry_points::EntryPoint;
use super::graph_links::{GraphLinks, GraphLinksMmap};
use crate::common::operation_error::OperationResult;
use crate::common::utils::rev_range;
use crate::index::hnsw_index::entry_points::EntryPoints;
use crate::index::hnsw_index::graph_links::GraphLinksConverter;
use crate::index::hnsw_index::point_scorer::FilteredScorer;
use crate::index::hnsw_index::search_context::SearchContext;
use crate::index::visited_pool::{VisitedListHandle, VisitedPool};

pub type LinkContainer = Vec<PointOffsetType>;
pub type LayersContainer = Vec<LinkContainer>;

pub const HNSW_GRAPH_FILE: &str = "graph.bin";
pub const HNSW_LINKS_FILE: &str = "links.bin";

/// Contents of the `graph.bin` file.
#[derive(Deserialize, Serialize, Debug)]
struct GraphLayerData<'a> {
    m: usize,
    m0: usize,
    ef_construct: usize,
    entry_points: Cow<'a, EntryPoints>,
}

/// Contents of the `graph.bin` file (Qdrant 0.8.4).
#[derive(Deserialize, Serialize, Debug)]
struct GraphLayersBackwardCompatibility {
    max_level: usize,
    m: usize,
    m0: usize,
    ef_construct: usize,
    links_layers: Vec<LayersContainer>,
    entry_points: EntryPoints,
}

#[derive(Debug)]
pub struct GraphLayers<TGraphLinks: GraphLinks> {
    pub(super) m: usize,
    pub(super) m0: usize,
    pub(super) ef_construct: usize,
    pub(super) links: TGraphLinks,
    pub(super) entry_points: EntryPoints,
    pub(super) visited_pool: VisitedPool,
}

pub trait GraphLayersBase {
    fn get_visited_list_from_pool(&self) -> VisitedListHandle;

    fn links_map<F>(&self, point_id: PointOffsetType, level: usize, f: F)
    where
        F: FnMut(PointOffsetType);

    /// Get M based on current level
    fn get_m(&self, level: usize) -> usize;

    /// Greedy search for closest points within a single graph layer
    fn _search_on_level(
        &self,
        searcher: &mut SearchContext,
        level: usize,
        visited_list: &mut VisitedListHandle,
        points_scorer: &mut FilteredScorer,
    ) {
        let limit = self.get_m(level);
        let mut points_ids: Vec<PointOffsetType> = Vec::with_capacity(2 * limit);

        while let Some(candidate) = searcher.candidates.pop() {
            if candidate.score < searcher.lower_bound() {
                break;
            }

            points_ids.clear();
            self.links_map(candidate.idx, level, |link| {
                if !visited_list.check(link) {
                    points_ids.push(link);
                }
            });

            let scores = points_scorer.score_points(&mut points_ids, limit);
            scores.iter().copied().for_each(|score_point| {
                searcher.process_candidate(score_point);
                visited_list.check_and_update_visited(score_point.idx);
            });
        }
    }

    fn search_on_level(
        &self,
        level_entry: ScoredPointOffset,
        level: usize,
        ef: usize,
        points_scorer: &mut FilteredScorer,
    ) -> FixedLengthPriorityQueue<ScoredPointOffset> {
        let mut visited_list = self.get_visited_list_from_pool();
        visited_list.check_and_update_visited(level_entry.idx);
        let mut search_context = SearchContext::new(level_entry, ef);

        self._search_on_level(&mut search_context, level, &mut visited_list, points_scorer);
        search_context.nearest
    }

    /// Greedy searches for entry point of level `target_level`.
    /// Beam size is 1.
    fn search_entry(
        &self,
        entry_point: PointOffsetType,
        top_level: usize,
        target_level: usize,
        points_scorer: &mut FilteredScorer,
    ) -> ScoredPointOffset {
        let mut links: Vec<PointOffsetType> = Vec::with_capacity(2 * self.get_m(0));

        let mut current_point = ScoredPointOffset {
            idx: entry_point,
            score: points_scorer.score_point(entry_point),
        };
        for level in rev_range(top_level, target_level) {
            let limit = self.get_m(level);

            let mut changed = true;
            while changed {
                changed = false;

                links.clear();
                self.links_map(current_point.idx, level, |link| {
                    links.push(link);
                });

                let scores = points_scorer.score_points(&mut links, limit);
                scores.iter().copied().for_each(|score_point| {
                    if score_point.score > current_point.score {
                        changed = true;
                        current_point = score_point;
                    }
                });
            }
        }
        current_point
    }
}

impl<TGraphLinks: GraphLinks> GraphLayersBase for GraphLayers<TGraphLinks> {
    fn get_visited_list_from_pool(&self) -> VisitedListHandle {
        self.visited_pool.get(self.links.num_points())
    }

    fn links_map<F>(&self, point_id: PointOffsetType, level: usize, mut f: F)
    where
        F: FnMut(PointOffsetType),
    {
        for link in self.links.links(point_id, level) {
            f(link);
        }
    }

    fn get_m(&self, level: usize) -> usize {
        if level == 0 {
            self.m0
        } else {
            self.m
        }
    }
}

/// Object contains links between nodes for HNSW search
///
/// Assume all scores are similarities. Larger score = closer points
impl<TGraphLinks: GraphLinks> GraphLayers<TGraphLinks> {
    /// Returns the highest level this point is included in
    pub fn point_level(&self, point_id: PointOffsetType) -> usize {
        self.links.point_level(point_id)
    }

    fn get_entry_point(
        &self,
        points_scorer: &FilteredScorer,
        custom_entry_points: Option<&[PointOffsetType]>,
    ) -> Option<EntryPoint> {
        // Try to get it from custom entry points
        custom_entry_points
            .and_then(|custom_entry_points| {
                custom_entry_points
                    .iter()
                    .filter(|&&point_id| points_scorer.check_vector(point_id))
                    .map(|&point_id| {
                        let level = self.point_level(point_id);
                        EntryPoint { point_id, level }
                    })
                    .max_by_key(|ep| ep.level)
            })
            .or_else(|| {
                // Otherwise use normal entry points
                self.entry_points
                    .get_entry_point(|point_id| points_scorer.check_vector(point_id))
            })
    }

    pub fn search(
        &self,
        top: usize,
        ef: usize,
        mut points_scorer: FilteredScorer,
        custom_entry_points: Option<&[PointOffsetType]>,
    ) -> Vec<ScoredPointOffset> {
        let Some(entry_point) = self.get_entry_point(&points_scorer, custom_entry_points) else {
            return Vec::default();
        };

        let zero_level_entry = self.search_entry(
            entry_point.point_id,
            entry_point.level,
            0,
            &mut points_scorer,
        );
        let nearest = self.search_on_level(zero_level_entry, 0, max(top, ef), &mut points_scorer);
        nearest.into_iter().take(top).collect_vec()
    }

    pub fn get_path(path: &Path) -> PathBuf {
        path.join(HNSW_GRAPH_FILE)
    }

    pub fn get_links_path(path: &Path) -> PathBuf {
        path.join(HNSW_LINKS_FILE)
    }

    pub fn num_points(&self) -> usize {
        self.links.num_points()
    }
}

impl<TGraphLinks> GraphLayers<TGraphLinks>
where
    TGraphLinks: GraphLinks,
{
    pub fn load(graph_path: &Path, links_path: &Path) -> OperationResult<Self> {
        let try_data: Result<GraphLayerData, FileStorageError> = if links_path.exists() {
            read_bin(graph_path)
        } else {
            Err(FileStorageError::generic(format!(
                "Links file does not exists: {links_path:?}"
            )))
        };

        match try_data {
            Ok(data) => {
                let links = TGraphLinks::load_from_file(links_path)?;
                Ok(Self {
                    m: data.m,
                    m0: data.m0,
                    ef_construct: data.ef_construct,
                    links,
                    entry_points: data.entry_points.into_owned(),
                    visited_pool: VisitedPool::new(),
                })
            }
            Err(err) => {
                let try_legacy: Result<GraphLayersBackwardCompatibility, _> = read_bin(graph_path);
                if let Ok(legacy) = try_legacy {
                    log::debug!("Converting legacy graph to new format");

                    let mut converter = GraphLinksConverter::new(legacy.links_layers);
                    converter.save_as(links_path)?;

                    let links = TGraphLinks::from_converter(converter)?;
                    let slf = Self {
                        m: legacy.m,
                        m0: legacy.m0,
                        ef_construct: legacy.ef_construct,
                        links,
                        entry_points: legacy.entry_points,
                        visited_pool: VisitedPool::new(),
                    };
                    slf.save(graph_path)?;
                    Ok(slf)
                } else {
                    Err(err)?
                }
            }
        }
    }

    pub fn save(&self, path: &Path) -> OperationResult<()> {
        Ok(atomic_save_bin(path, &self.data())?)
    }

    fn data(&self) -> GraphLayerData {
        GraphLayerData {
            m: self.m,
            m0: self.m0,
            ef_construct: self.ef_construct,
            entry_points: Cow::Borrowed(&self.entry_points),
        }
    }
}

impl GraphLayers<GraphLinksMmap> {
    pub fn prefault_mmap_pages(&self, path: &Path) -> mmap_ops::PrefaultMmapPages {
        self.links.prefault_mmap_pages(path)
    }
}

#[cfg(test)]
mod tests {
    use std::fs::File;
    use std::io::Write;

    use itertools::Itertools;
    use rand::rngs::StdRng;
    use rand::SeedableRng;
    use tempfile::Builder;

    use super::*;
    use crate::data_types::vectors::VectorElementType;
    use crate::fixtures::index_fixtures::{
        random_vector, FakeFilterContext, TestRawScorerProducer,
    };
    use crate::index::hnsw_index::graph_links::GraphLinksRam;
    use crate::index::hnsw_index::tests::create_graph_layer_fixture;
    use crate::spaces::metric::Metric;
    use crate::spaces::simple::{CosineMetric, DotProductMetric};
    use crate::vector_storage::chunked_vector_storage::VectorOffsetType;

    fn search_in_graph<TGraphLinks: GraphLinks>(
        query: &[VectorElementType],
        top: usize,
        vector_storage: &TestRawScorerProducer<CosineMetric>,
        graph: &GraphLayers<TGraphLinks>,
    ) -> Vec<ScoredPointOffset> {
        let fake_filter_context = FakeFilterContext {};
        let raw_scorer = vector_storage.get_raw_scorer(query.to_owned()).unwrap();

        let scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
        let ef = 16;
        let res = graph.search(top, ef, scorer, None);
        raw_scorer.take_hardware_counter().discard_results();
        res
    }

    const M: usize = 8;

    #[test]
    fn test_search_on_level() {
        let dim = 8;
        let m = 8;
        let ef_construct = 32;
        let entry_points_num = 10;
        let num_vectors = 10;

        let mut rng = StdRng::seed_from_u64(42);

        let vector_holder =
            TestRawScorerProducer::<DotProductMetric>::new(dim, num_vectors, &mut rng);

        let mut graph_links = vec![vec![Vec::new()]; num_vectors];
        graph_links[0][0] = vec![1, 2, 3, 4, 5, 6];

        let graph_layers = GraphLayers {
            m,
            m0: 2 * m,
            ef_construct,
            links: GraphLinksRam::from_converter(GraphLinksConverter::new(graph_links.clone()))
                .unwrap(),
            entry_points: EntryPoints::new(entry_points_num),
            visited_pool: VisitedPool::new(),
        };

        let linking_idx: PointOffsetType = 7;

        let fake_filter_context = FakeFilterContext {};
        let added_vector = vector_holder
            .vectors
            .get(linking_idx as VectorOffsetType)
            .to_vec();
        let raw_scorer = vector_holder.get_raw_scorer(added_vector).unwrap();
        let mut scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));

        let nearest_on_level = graph_layers.search_on_level(
            ScoredPointOffset {
                idx: 0,
                score: scorer.score_point(0),
            },
            0,
            32,
            &mut scorer,
        );

        assert_eq!(nearest_on_level.len(), graph_links[0][0].len() + 1);

        for nearest in &nearest_on_level {
            // eprintln!("nearest = {:#?}", nearest);
            assert_eq!(
                nearest.score,
                scorer.score_internal(linking_idx, nearest.idx)
            )
        }

        raw_scorer.take_hardware_counter().discard_results();
    }

    #[test]
    fn test_save_and_load() {
        let num_vectors = 100;
        let dim = 8;
        let top = 5;

        let mut rng = StdRng::seed_from_u64(42);

        let dir = Builder::new().prefix("graph_dir").tempdir().unwrap();
        let links_path = GraphLayers::<GraphLinksRam>::get_links_path(dir.path());
        let (vector_holder, graph_layers) = create_graph_layer_fixture::<CosineMetric, _>(
            num_vectors,
            M,
            dim,
            false,
            &mut rng,
            Some(&links_path),
        );

        let query = random_vector(&mut rng, dim);

        let res1 = search_in_graph(&query, top, &vector_holder, &graph_layers);

        let path = GraphLayers::<GraphLinksRam>::get_path(dir.path());
        graph_layers.save(&path).unwrap();

        let graph2 = GraphLayers::<GraphLinksRam>::load(&path, &links_path).unwrap();

        let res2 = search_in_graph(&query, top, &vector_holder, &graph2);

        assert_eq!(res1, res2)
    }

    #[test]
    fn test_add_points() {
        let num_vectors = 1000;
        let dim = 8;

        let mut rng = StdRng::seed_from_u64(42);

        type M = CosineMetric;

        let (vector_holder, graph_layers) =
            create_graph_layer_fixture::<M, _>(num_vectors, M, dim, false, &mut rng, None);

        let main_entry = graph_layers
            .entry_points
            .get_entry_point(|_x| true)
            .expect("Expect entry point to exists");

        assert!(main_entry.level > 0);

        let num_levels = (0..num_vectors)
            .map(|i| graph_layers.links.point_level(i as PointOffsetType))
            .max()
            .unwrap();
        assert_eq!(main_entry.level, num_levels);

        let total_links_0 = (0..num_vectors)
            .map(|i| graph_layers.links.links(i as PointOffsetType, 0).count())
            .sum::<usize>();

        eprintln!("total_links_0 = {total_links_0:#?}");
        eprintln!("num_vectors = {num_vectors:#?}");
        assert!(total_links_0 > 0);
        assert!(total_links_0 as f64 / num_vectors as f64 > M as f64);

        let top = 5;
        let query = random_vector(&mut rng, dim);
        let processed_query = <M as Metric<VectorElementType>>::preprocess(query.clone());
        let mut reference_top = FixedLengthPriorityQueue::new(top);
        for idx in 0..vector_holder.vectors.len() as PointOffsetType {
            let vec = &vector_holder.vectors.get(idx as VectorOffsetType);
            reference_top.push(ScoredPointOffset {
                idx,
                score: M::similarity(vec, &processed_query),
            });
        }

        let graph_search = search_in_graph(&query, top, &vector_holder, &graph_layers);

        assert_eq!(reference_top.into_vec(), graph_search);
    }

    #[test]
    #[ignore]
    fn test_draw_hnsw_graph() {
        let dim = 2;
        let num_vectors = 500;

        let mut rng = StdRng::seed_from_u64(42);

        let (vector_holder, graph_layers) = create_graph_layer_fixture::<CosineMetric, _>(
            num_vectors,
            M,
            dim,
            true,
            &mut rng,
            None,
        );

        let graph_json = serde_json::to_string_pretty(&graph_layers.data()).unwrap();

        let vectors_json = serde_json::to_string_pretty(
            &(0..vector_holder.vectors.len() as PointOffsetType)
                .map(|point_id| {
                    vector_holder
                        .vectors
                        .get(point_id as VectorOffsetType)
                        .to_vec()
                })
                .collect_vec(),
        )
        .unwrap();

        let mut file = File::create("graph.json").unwrap();
        file.write_all(
            format!("{{ \"graph\": {graph_json}, \n \"vectors\": {vectors_json} }}").as_bytes(),
        )
        .unwrap();
    }
}