Spaces:
Build error
Build error
File size: 33,339 Bytes
84d2a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 |
use std::cmp::{max, min};
use std::collections::BinaryHeap;
use std::path::Path;
use std::sync::atomic::AtomicUsize;
use bitvec::prelude::BitVec;
use common::fixed_length_priority_queue::FixedLengthPriorityQueue;
use common::types::{PointOffsetType, ScoreType, ScoredPointOffset};
use parking_lot::{Mutex, MutexGuard, RwLock};
use rand::distributions::Uniform;
use rand::Rng;
use super::graph_links::GraphLinks;
use crate::common::operation_error::OperationResult;
use crate::index::hnsw_index::entry_points::EntryPoints;
use crate::index::hnsw_index::graph_layers::{GraphLayers, GraphLayersBase, LinkContainer};
use crate::index::hnsw_index::graph_links::GraphLinksConverter;
use crate::index::hnsw_index::point_scorer::FilteredScorer;
use crate::index::hnsw_index::search_context::SearchContext;
use crate::index::visited_pool::{VisitedListHandle, VisitedPool};
pub type LockedLinkContainer = RwLock<LinkContainer>;
pub type LockedLayersContainer = Vec<LockedLinkContainer>;
/// Same as `GraphLayers`, but allows to build in parallel
/// Convertible to `GraphLayers`
pub struct GraphLayersBuilder {
max_level: AtomicUsize,
m: usize,
m0: usize,
ef_construct: usize,
// Factor of level probability
level_factor: f64,
// Exclude points according to "not closer than base" heuristic?
use_heuristic: bool,
links_layers: Vec<LockedLayersContainer>,
entry_points: Mutex<EntryPoints>,
// Fields used on construction phase only
visited_pool: VisitedPool,
// List of bool flags, which defines if the point is already indexed or not
ready_list: RwLock<BitVec>,
}
impl GraphLayersBase for GraphLayersBuilder {
fn get_visited_list_from_pool(&self) -> VisitedListHandle {
self.visited_pool.get(self.num_points())
}
fn links_map<F>(&self, point_id: PointOffsetType, level: usize, mut f: F)
where
F: FnMut(PointOffsetType),
{
let links = self.links_layers[point_id as usize][level].read();
let ready_list = self.ready_list.read();
for link in links.iter() {
if ready_list[*link as usize] {
f(*link);
}
}
}
fn get_m(&self, level: usize) -> usize {
if level == 0 {
self.m0
} else {
self.m
}
}
}
impl GraphLayersBuilder {
pub fn get_entry_points(&self) -> MutexGuard<EntryPoints> {
self.entry_points.lock()
}
pub fn into_graph_layers<TGraphLinks: GraphLinks>(
self,
path: Option<&Path>,
) -> OperationResult<GraphLayers<TGraphLinks>> {
let unlocker_links_layers = self
.links_layers
.into_iter()
.map(|l| l.into_iter().map(|l| l.into_inner()).collect())
.collect();
let mut links_converter = GraphLinksConverter::new(unlocker_links_layers);
if let Some(path) = path {
links_converter.save_as(path)?;
}
let links = TGraphLinks::from_converter(links_converter)?;
Ok(GraphLayers {
m: self.m,
m0: self.m0,
ef_construct: self.ef_construct,
links,
entry_points: self.entry_points.into_inner(),
visited_pool: self.visited_pool,
})
}
pub fn new_with_params(
num_vectors: usize, // Initial number of points in index
m: usize, // Expected M for non-first layer
m0: usize, // Expected M for first layer
ef_construct: usize,
entry_points_num: usize, // Depends on number of points
use_heuristic: bool,
reserve: bool,
) -> Self {
let links_layers = std::iter::repeat_with(|| {
vec![RwLock::new(if reserve {
Vec::with_capacity(m0)
} else {
vec![]
})]
})
.take(num_vectors)
.collect();
let ready_list = RwLock::new(BitVec::repeat(false, num_vectors));
Self {
max_level: AtomicUsize::new(0),
m,
m0,
ef_construct,
level_factor: 1.0 / (max(m, 2) as f64).ln(),
use_heuristic,
links_layers,
entry_points: Mutex::new(EntryPoints::new(entry_points_num)),
visited_pool: VisitedPool::new(),
ready_list,
}
}
pub fn new(
num_vectors: usize, // Initial number of points in index
m: usize, // Expected M for non-first layer
m0: usize, // Expected M for first layer
ef_construct: usize,
entry_points_num: usize, // Depends on number of points
use_heuristic: bool,
) -> Self {
Self::new_with_params(
num_vectors,
m,
m0,
ef_construct,
entry_points_num,
use_heuristic,
true,
)
}
pub fn merge_from_other(&mut self, other: GraphLayersBuilder) {
self.max_level = AtomicUsize::new(max(
self.max_level.load(std::sync::atomic::Ordering::Relaxed),
other.max_level.load(std::sync::atomic::Ordering::Relaxed),
));
let mut visited_list = self.visited_pool.get(self.num_points());
if other.links_layers.len() > self.links_layers.len() {
self.links_layers
.resize_with(other.links_layers.len(), Vec::new);
}
for (point_id, layers) in other.links_layers.into_iter().enumerate() {
let current_layers = &mut self.links_layers[point_id];
for (level, other_links) in layers.into_iter().enumerate() {
if current_layers.len() <= level {
current_layers.push(other_links);
} else {
let other_links = other_links.into_inner();
visited_list.next_iteration();
let mut current_links = current_layers[level].write();
current_links.iter().copied().for_each(|x| {
visited_list.check_and_update_visited(x);
});
for other_link in other_links
.into_iter()
.filter(|x| !visited_list.check_and_update_visited(*x))
{
current_links.push(other_link);
}
}
}
}
self.entry_points
.lock()
.merge_from_other(other.entry_points.into_inner());
}
fn num_points(&self) -> usize {
self.links_layers.len()
}
/// Generate random level for a new point, according to geometric distribution
pub fn get_random_layer<R>(&self, rng: &mut R) -> usize
where
R: Rng + ?Sized,
{
let distribution = Uniform::new(0.0, 1.0);
let sample: f64 = rng.sample(distribution);
let picked_level = -sample.ln() * self.level_factor;
picked_level.round() as usize
}
fn get_point_level(&self, point_id: PointOffsetType) -> usize {
self.links_layers[point_id as usize].len() - 1
}
pub fn set_levels(&mut self, point_id: PointOffsetType, level: usize) {
if self.links_layers.len() <= point_id as usize {
while self.links_layers.len() <= point_id as usize {
self.links_layers.push(vec![]);
}
}
let point_layers = &mut self.links_layers[point_id as usize];
while point_layers.len() <= level {
let links = Vec::with_capacity(self.m);
point_layers.push(RwLock::new(links));
}
self.max_level
.fetch_max(level, std::sync::atomic::Ordering::Relaxed);
}
/// Connect new point to links, so that links contains only closest points
fn connect_new_point<F>(
links: &mut LinkContainer,
new_point_id: PointOffsetType,
target_point_id: PointOffsetType,
level_m: usize,
mut score_internal: F,
) where
F: FnMut(PointOffsetType, PointOffsetType) -> ScoreType,
{
// ToDo: binary search here ? (most likely does not worth it)
let new_to_target = score_internal(target_point_id, new_point_id);
let mut id_to_insert = links.len();
for (i, &item) in links.iter().enumerate() {
let target_to_link = score_internal(target_point_id, item);
if target_to_link < new_to_target {
id_to_insert = i;
break;
}
}
if links.len() < level_m {
links.insert(id_to_insert, new_point_id);
} else if id_to_insert != links.len() {
links.pop();
links.insert(id_to_insert, new_point_id);
}
}
/// <https://github.com/nmslib/hnswlib/issues/99>
fn select_candidate_with_heuristic_from_sorted<F>(
candidates: impl Iterator<Item = ScoredPointOffset>,
m: usize,
mut score_internal: F,
) -> Vec<PointOffsetType>
where
F: FnMut(PointOffsetType, PointOffsetType) -> ScoreType,
{
let mut result_list = Vec::with_capacity(m);
for current_closest in candidates {
if result_list.len() >= m {
break;
}
let mut is_good = true;
for &selected_point in &result_list {
let dist_to_already_selected = score_internal(current_closest.idx, selected_point);
if dist_to_already_selected > current_closest.score {
is_good = false;
break;
}
}
if is_good {
result_list.push(current_closest.idx);
}
}
result_list
}
/// <https://github.com/nmslib/hnswlib/issues/99>
fn select_candidates_with_heuristic<F>(
candidates: FixedLengthPriorityQueue<ScoredPointOffset>,
m: usize,
score_internal: F,
) -> Vec<PointOffsetType>
where
F: FnMut(PointOffsetType, PointOffsetType) -> ScoreType,
{
let closest_iter = candidates.into_iter();
Self::select_candidate_with_heuristic_from_sorted(closest_iter, m, score_internal)
}
pub fn link_new_point(&self, point_id: PointOffsetType, mut points_scorer: FilteredScorer) {
// Check if there is an suitable entry point
// - entry point level if higher or equal
// - it satisfies filters
let level = self.get_point_level(point_id);
let entry_point_opt = self
.entry_points
.lock()
.get_entry_point(|point_id| points_scorer.check_vector(point_id));
match entry_point_opt {
// New point is a new empty entry (for this filter, at least)
// We can't do much here, so just quit
None => {}
// Entry point found.
Some(entry_point) => {
let mut level_entry = if entry_point.level > level {
// The entry point is higher than a new point
// Let's find closest one on same level
// greedy search for a single closest point
self.search_entry(
entry_point.point_id,
entry_point.level,
level,
&mut points_scorer,
)
} else {
ScoredPointOffset {
idx: entry_point.point_id,
score: points_scorer.score_internal(point_id, entry_point.point_id),
}
};
// minimal common level for entry points
let linking_level = min(level, entry_point.level);
for curr_level in (0..=linking_level).rev() {
let level_m = self.get_m(curr_level);
let mut visited_list = self.get_visited_list_from_pool();
visited_list.check_and_update_visited(level_entry.idx);
let mut search_context = SearchContext::new(level_entry, self.ef_construct);
self._search_on_level(
&mut search_context,
curr_level,
&mut visited_list,
&mut points_scorer,
);
if let Some(the_nearest) = search_context.nearest.iter().max() {
level_entry = *the_nearest;
}
let scorer = |a, b| points_scorer.score_internal(a, b);
if self.use_heuristic {
let selected_nearest = {
let mut existing_links =
self.links_layers[point_id as usize][curr_level].write();
{
let ready_list = self.ready_list.read();
for &existing_link in existing_links.iter() {
if !visited_list.check(existing_link)
&& ready_list[existing_link as usize]
{
search_context.process_candidate(ScoredPointOffset {
idx: existing_link,
score: points_scorer.score_point(existing_link),
});
}
}
}
let selected_nearest = Self::select_candidates_with_heuristic(
search_context.nearest,
level_m,
scorer,
);
existing_links.clone_from(&selected_nearest);
selected_nearest
};
for &other_point in &selected_nearest {
let mut other_point_links =
self.links_layers[other_point as usize][curr_level].write();
if other_point_links.len() < level_m {
// If linked point is lack of neighbours
other_point_links.push(point_id);
} else {
let mut candidates = BinaryHeap::with_capacity(level_m + 1);
candidates.push(ScoredPointOffset {
idx: point_id,
score: scorer(point_id, other_point),
});
for other_point_link in
other_point_links.iter().take(level_m).copied()
{
candidates.push(ScoredPointOffset {
idx: other_point_link,
score: scorer(other_point_link, other_point),
});
}
let selected_candidates =
Self::select_candidate_with_heuristic_from_sorted(
candidates.into_sorted_vec().into_iter().rev(),
level_m,
scorer,
);
other_point_links.clear(); // this do not free memory, which is good
for selected in selected_candidates.iter().copied() {
other_point_links.push(selected);
}
}
}
} else {
for nearest_point in &search_context.nearest {
{
let mut links =
self.links_layers[point_id as usize][curr_level].write();
Self::connect_new_point(
&mut links,
nearest_point.idx,
point_id,
level_m,
scorer,
);
}
{
let mut links = self.links_layers[nearest_point.idx as usize]
[curr_level]
.write();
Self::connect_new_point(
&mut links,
point_id,
nearest_point.idx,
level_m,
scorer,
);
}
}
}
}
}
}
self.ready_list.write().set(point_id as usize, true);
self.entry_points
.lock()
.new_point(point_id, level, |point_id| {
points_scorer.check_vector(point_id)
});
}
/// This function returns average number of links per node in HNSW graph
/// on specified level.
///
/// Useful for:
/// - estimating memory consumption
/// - percolation threshold estimation
/// - debugging
pub fn get_average_connectivity_on_level(&self, level: usize) -> f32 {
let mut sum = 0;
let mut count = 0;
for links in self.links_layers.iter() {
if links.len() > level {
sum += links[level].read().len();
count += 1;
}
}
if count == 0 {
0.0
} else {
sum as f32 / count as f32
}
}
}
#[cfg(test)]
mod tests {
use itertools::Itertools;
use rand::prelude::StdRng;
use rand::seq::SliceRandom;
use rand::SeedableRng;
use super::*;
use crate::data_types::vectors::{DenseVector, VectorElementType};
use crate::fixtures::index_fixtures::{
random_vector, FakeFilterContext, TestRawScorerProducer,
};
use crate::index::hnsw_index::graph_links::GraphLinksRam;
use crate::index::hnsw_index::tests::create_graph_layer_fixture;
use crate::spaces::metric::Metric;
use crate::spaces::simple::{CosineMetric, EuclidMetric};
use crate::vector_storage::chunked_vector_storage::VectorOffsetType;
const M: usize = 8;
#[cfg(not(windows))]
fn parallel_graph_build<TMetric: Metric<VectorElementType> + Sync + Send, R>(
num_vectors: usize,
dim: usize,
use_heuristic: bool,
rng: &mut R,
) -> (TestRawScorerProducer<TMetric>, GraphLayersBuilder)
where
R: Rng + ?Sized,
{
use rayon::prelude::{IntoParallelIterator, ParallelIterator};
let pool = rayon::ThreadPoolBuilder::new()
.num_threads(2)
.build()
.unwrap();
let m = M;
let ef_construct = 16;
let entry_points_num = 10;
let vector_holder = TestRawScorerProducer::<TMetric>::new(dim, num_vectors, rng);
let mut graph_layers = GraphLayersBuilder::new(
num_vectors,
m,
m * 2,
ef_construct,
entry_points_num,
use_heuristic,
);
for idx in 0..(num_vectors as PointOffsetType) {
let level = graph_layers.get_random_layer(rng);
graph_layers.set_levels(idx, level);
}
pool.install(|| {
(0..(num_vectors as PointOffsetType))
.into_par_iter()
.for_each(|idx| {
let fake_filter_context = FakeFilterContext {};
let added_vector = vector_holder.vectors.get(idx as VectorOffsetType).to_vec();
let raw_scorer = vector_holder.get_raw_scorer(added_vector).unwrap();
let scorer =
FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
graph_layers.link_new_point(idx, scorer);
raw_scorer.take_hardware_counter().discard_results();
});
});
(vector_holder, graph_layers)
}
fn create_graph_layer<TMetric: Metric<VectorElementType>, R>(
num_vectors: usize,
dim: usize,
use_heuristic: bool,
rng: &mut R,
) -> (TestRawScorerProducer<TMetric>, GraphLayersBuilder)
where
R: Rng + ?Sized,
{
let m = M;
let ef_construct = 16;
let entry_points_num = 10;
let vector_holder = TestRawScorerProducer::<TMetric>::new(dim, num_vectors, rng);
let mut graph_layers = GraphLayersBuilder::new(
num_vectors,
m,
m * 2,
ef_construct,
entry_points_num,
use_heuristic,
);
for idx in 0..(num_vectors as PointOffsetType) {
let level = graph_layers.get_random_layer(rng);
graph_layers.set_levels(idx, level);
}
for idx in 0..(num_vectors as PointOffsetType) {
let fake_filter_context = FakeFilterContext {};
let added_vector = vector_holder.vectors.get(idx as VectorOffsetType).to_vec();
let raw_scorer = vector_holder.get_raw_scorer(added_vector.clone()).unwrap();
let scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
graph_layers.link_new_point(idx, scorer);
raw_scorer.take_hardware_counter().discard_results();
}
(vector_holder, graph_layers)
}
#[cfg(not(windows))] // https://github.com/qdrant/qdrant/issues/1452
#[test]
fn test_parallel_graph_build() {
let num_vectors = 1000;
let dim = 8;
let mut rng = StdRng::seed_from_u64(42);
type M = CosineMetric;
// let (vector_holder, graph_layers_builder) =
// create_graph_layer::<M, _>(num_vectors, dim, false, &mut rng);
let (vector_holder, graph_layers_builder) =
parallel_graph_build::<M, _>(num_vectors, dim, false, &mut rng);
let main_entry = graph_layers_builder
.entry_points
.lock()
.get_entry_point(|_x| true)
.expect("Expect entry point to exists");
assert!(main_entry.level > 0);
let num_levels = graph_layers_builder
.links_layers
.iter()
.map(|x| x.len())
.max()
.unwrap();
assert_eq!(main_entry.level + 1, num_levels);
let total_links_0: usize = graph_layers_builder
.links_layers
.iter()
.map(|x| x[0].read().len())
.sum();
assert!(total_links_0 > 0);
eprintln!("total_links_0 = {total_links_0:#?}");
eprintln!("num_vectors = {num_vectors:#?}");
assert!(total_links_0 as f64 / num_vectors as f64 > M as f64);
let top = 5;
let query = random_vector(&mut rng, dim);
let processed_query = <M as Metric<VectorElementType>>::preprocess(query.clone());
let mut reference_top = FixedLengthPriorityQueue::new(top);
for idx in 0..vector_holder.vectors.len() as PointOffsetType {
let vec = &vector_holder.vectors.get(idx as VectorOffsetType);
reference_top.push(ScoredPointOffset {
idx,
score: M::similarity(vec, &processed_query),
});
}
let graph = graph_layers_builder
.into_graph_layers::<GraphLinksRam>(None)
.unwrap();
let fake_filter_context = FakeFilterContext {};
let raw_scorer = vector_holder.get_raw_scorer(query).unwrap();
let scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
let ef = 16;
let graph_search = graph.search(top, ef, scorer, None);
raw_scorer.take_hardware_counter().discard_results();
assert_eq!(reference_top.into_vec(), graph_search);
}
#[test]
fn test_add_points() {
let num_vectors = 1000;
let dim = 8;
let mut rng = StdRng::seed_from_u64(42);
let mut rng2 = StdRng::seed_from_u64(42);
type M = CosineMetric;
let (vector_holder, graph_layers_builder) =
create_graph_layer::<M, _>(num_vectors, dim, false, &mut rng);
let (_vector_holder_orig, graph_layers_orig) =
create_graph_layer_fixture::<M, _>(num_vectors, M, dim, false, &mut rng2, None);
// check is graph_layers_builder links are equal to graph_layers_orig
let orig_len = graph_layers_orig.links.num_points();
let builder_len = graph_layers_builder.links_layers.len();
assert_eq!(orig_len, builder_len);
for idx in 0..builder_len {
let links_orig = &graph_layers_orig
.links
.links(idx as PointOffsetType, 0)
.collect_vec();
let links_builder = graph_layers_builder.links_layers[idx][0].read();
let link_container_from_builder = links_builder.iter().copied().collect::<Vec<_>>();
assert_eq!(links_orig, &link_container_from_builder);
}
let main_entry = graph_layers_builder
.entry_points
.lock()
.get_entry_point(|_x| true)
.expect("Expect entry point to exists");
assert!(main_entry.level > 0);
let num_levels = graph_layers_builder
.links_layers
.iter()
.map(|x| x.len())
.max()
.unwrap();
assert_eq!(main_entry.level + 1, num_levels);
let total_links_0: usize = graph_layers_builder
.links_layers
.iter()
.map(|x| x[0].read().len())
.sum();
assert!(total_links_0 > 0);
eprintln!("total_links_0 = {total_links_0:#?}");
eprintln!("num_vectors = {num_vectors:#?}");
assert!(total_links_0 as f64 / num_vectors as f64 > M as f64);
let top = 5;
let query = random_vector(&mut rng, dim);
let processed_query = <M as Metric<VectorElementType>>::preprocess(query.clone());
let mut reference_top = FixedLengthPriorityQueue::new(top);
for idx in 0..vector_holder.vectors.len() as PointOffsetType {
let vec = &vector_holder.vectors.get(idx as VectorOffsetType);
reference_top.push(ScoredPointOffset {
idx,
score: M::similarity(vec, &processed_query),
});
}
let graph = graph_layers_builder
.into_graph_layers::<GraphLinksRam>(None)
.unwrap();
let fake_filter_context = FakeFilterContext {};
let raw_scorer = vector_holder.get_raw_scorer(query).unwrap();
let scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
let ef = 16;
let graph_search = graph.search(top, ef, scorer, None);
raw_scorer.take_hardware_counter().discard_results();
assert_eq!(reference_top.into_vec(), graph_search);
}
#[test]
#[ignore]
fn test_hnsw_graph_properties() {
const NUM_VECTORS: usize = 5_000;
const DIM: usize = 16;
const M: usize = 16;
const EF_CONSTRUCT: usize = 64;
const USE_HEURISTIC: bool = true;
let mut rng = StdRng::seed_from_u64(42);
let vector_holder = TestRawScorerProducer::<CosineMetric>::new(DIM, NUM_VECTORS, &mut rng);
let mut graph_layers_builder =
GraphLayersBuilder::new(NUM_VECTORS, M, M * 2, EF_CONSTRUCT, 10, USE_HEURISTIC);
let fake_filter_context = FakeFilterContext {};
for idx in 0..(NUM_VECTORS as PointOffsetType) {
let added_vector = vector_holder.vectors.get(idx as VectorOffsetType).to_vec();
let raw_scorer = vector_holder.get_raw_scorer(added_vector).unwrap();
let scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
let level = graph_layers_builder.get_random_layer(&mut rng);
graph_layers_builder.set_levels(idx, level);
graph_layers_builder.link_new_point(idx, scorer);
raw_scorer.take_hardware_counter().discard_results();
}
let graph_layers = graph_layers_builder
.into_graph_layers::<GraphLinksRam>(None)
.unwrap();
let num_points = graph_layers.links.num_points();
eprintln!("number_points = {num_points:#?}");
let max_layer = (0..NUM_VECTORS)
.map(|i| graph_layers.links.point_level(i as PointOffsetType))
.max()
.unwrap();
eprintln!("max_layer = {:#?}", max_layer + 1);
let layers910 = graph_layers.links.point_level(910);
let links910 = (0..layers910 + 1)
.map(|i| graph_layers.links.links(910, i).collect_vec())
.collect::<Vec<_>>();
eprintln!("graph_layers.links_layers[910] = {links910:#?}",);
let total_edges: usize = (0..NUM_VECTORS)
.map(|i| graph_layers.links.links(i as PointOffsetType, 0).count())
.sum();
let avg_connectivity = total_edges as f64 / NUM_VECTORS as f64;
eprintln!("avg_connectivity = {avg_connectivity:#?}");
}
#[test]
#[ignore]
fn test_candidate_selection_heuristics() {
const NUM_VECTORS: usize = 100;
const DIM: usize = 16;
const M: usize = 16;
let mut rng = StdRng::seed_from_u64(42);
let vector_holder = TestRawScorerProducer::<EuclidMetric>::new(DIM, NUM_VECTORS, &mut rng);
let mut candidates: FixedLengthPriorityQueue<ScoredPointOffset> =
FixedLengthPriorityQueue::new(NUM_VECTORS);
let new_vector_to_insert = random_vector(&mut rng, DIM);
let scorer = vector_holder.get_raw_scorer(new_vector_to_insert).unwrap();
for i in 0..NUM_VECTORS {
candidates.push(ScoredPointOffset {
idx: i as PointOffsetType,
score: scorer.score_point(i as PointOffsetType),
});
}
let sorted_candidates = candidates.into_vec();
for x in sorted_candidates.iter().take(M) {
eprintln!("sorted_candidates = ({}, {})", x.idx, x.score);
}
let selected_candidates = GraphLayersBuilder::select_candidate_with_heuristic_from_sorted(
sorted_candidates.into_iter(),
M,
|a, b| scorer.score_internal(a, b),
);
for x in selected_candidates.iter() {
eprintln!("selected_candidates = {x}");
}
scorer.take_hardware_counter().discard_results();
}
#[test]
fn test_connect_new_point() {
let num_points = 10;
let m = 6;
let ef_construct = 32;
// See illustration in docs
let points: Vec<DenseVector> = vec![
vec![21.79, 7.18], // Target
vec![20.58, 5.46], // 1 B - yes
vec![21.19, 4.51], // 2 C
vec![24.73, 8.24], // 3 D - yes
vec![24.55, 9.98], // 4 E
vec![26.11, 6.85], // 5 F
vec![17.64, 11.14], // 6 G - yes
vec![14.97, 11.52], // 7 I
vec![14.97, 9.60], // 8 J
vec![16.23, 14.32], // 9 H
vec![12.69, 19.13], // 10 K
];
let scorer = |a: PointOffsetType, b: PointOffsetType| {
-((points[a as usize][0] - points[b as usize][0]).powi(2)
+ (points[a as usize][1] - points[b as usize][1]).powi(2))
.sqrt()
};
let mut insert_ids = (1..points.len() as PointOffsetType).collect_vec();
let mut candidates = FixedLengthPriorityQueue::new(insert_ids.len());
for &id in &insert_ids {
candidates.push(ScoredPointOffset {
idx: id,
score: scorer(0, id),
});
}
let res = GraphLayersBuilder::select_candidates_with_heuristic(candidates, m, scorer);
assert_eq!(&res, &vec![1, 3, 6]);
let mut rng = StdRng::seed_from_u64(42);
let graph_layers_builder = GraphLayersBuilder::new(num_points, m, m, ef_construct, 1, true);
insert_ids.shuffle(&mut rng);
for &id in &insert_ids {
let level_m = graph_layers_builder.get_m(0);
let mut links = graph_layers_builder.links_layers[0][0].write();
GraphLayersBuilder::connect_new_point(&mut links, id, 0, level_m, scorer)
}
let mut result = Vec::new();
graph_layers_builder.links_layers[0][0]
.read()
.iter()
.for_each(|x| result.push(*x));
assert_eq!(&result, &vec![1, 2, 3, 4, 5, 6]);
}
}
|