File size: 33,339 Bytes
84d2a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
use std::cmp::{max, min};
use std::collections::BinaryHeap;
use std::path::Path;
use std::sync::atomic::AtomicUsize;

use bitvec::prelude::BitVec;
use common::fixed_length_priority_queue::FixedLengthPriorityQueue;
use common::types::{PointOffsetType, ScoreType, ScoredPointOffset};
use parking_lot::{Mutex, MutexGuard, RwLock};
use rand::distributions::Uniform;
use rand::Rng;

use super::graph_links::GraphLinks;
use crate::common::operation_error::OperationResult;
use crate::index::hnsw_index::entry_points::EntryPoints;
use crate::index::hnsw_index::graph_layers::{GraphLayers, GraphLayersBase, LinkContainer};
use crate::index::hnsw_index::graph_links::GraphLinksConverter;
use crate::index::hnsw_index::point_scorer::FilteredScorer;
use crate::index::hnsw_index::search_context::SearchContext;
use crate::index::visited_pool::{VisitedListHandle, VisitedPool};

pub type LockedLinkContainer = RwLock<LinkContainer>;
pub type LockedLayersContainer = Vec<LockedLinkContainer>;

/// Same as `GraphLayers`,  but allows to build in parallel
/// Convertible to `GraphLayers`
pub struct GraphLayersBuilder {
    max_level: AtomicUsize,
    m: usize,
    m0: usize,
    ef_construct: usize,
    // Factor of level probability
    level_factor: f64,
    // Exclude points according to "not closer than base" heuristic?
    use_heuristic: bool,
    links_layers: Vec<LockedLayersContainer>,
    entry_points: Mutex<EntryPoints>,

    // Fields used on construction phase only
    visited_pool: VisitedPool,

    // List of bool flags, which defines if the point is already indexed or not
    ready_list: RwLock<BitVec>,
}

impl GraphLayersBase for GraphLayersBuilder {
    fn get_visited_list_from_pool(&self) -> VisitedListHandle {
        self.visited_pool.get(self.num_points())
    }

    fn links_map<F>(&self, point_id: PointOffsetType, level: usize, mut f: F)
    where
        F: FnMut(PointOffsetType),
    {
        let links = self.links_layers[point_id as usize][level].read();
        let ready_list = self.ready_list.read();
        for link in links.iter() {
            if ready_list[*link as usize] {
                f(*link);
            }
        }
    }

    fn get_m(&self, level: usize) -> usize {
        if level == 0 {
            self.m0
        } else {
            self.m
        }
    }
}

impl GraphLayersBuilder {
    pub fn get_entry_points(&self) -> MutexGuard<EntryPoints> {
        self.entry_points.lock()
    }

    pub fn into_graph_layers<TGraphLinks: GraphLinks>(
        self,
        path: Option<&Path>,
    ) -> OperationResult<GraphLayers<TGraphLinks>> {
        let unlocker_links_layers = self
            .links_layers
            .into_iter()
            .map(|l| l.into_iter().map(|l| l.into_inner()).collect())
            .collect();

        let mut links_converter = GraphLinksConverter::new(unlocker_links_layers);
        if let Some(path) = path {
            links_converter.save_as(path)?;
        }

        let links = TGraphLinks::from_converter(links_converter)?;
        Ok(GraphLayers {
            m: self.m,
            m0: self.m0,
            ef_construct: self.ef_construct,
            links,
            entry_points: self.entry_points.into_inner(),
            visited_pool: self.visited_pool,
        })
    }

    pub fn new_with_params(
        num_vectors: usize, // Initial number of points in index
        m: usize,           // Expected M for non-first layer
        m0: usize,          // Expected M for first layer
        ef_construct: usize,
        entry_points_num: usize, // Depends on number of points
        use_heuristic: bool,
        reserve: bool,
    ) -> Self {
        let links_layers = std::iter::repeat_with(|| {
            vec![RwLock::new(if reserve {
                Vec::with_capacity(m0)
            } else {
                vec![]
            })]
        })
        .take(num_vectors)
        .collect();

        let ready_list = RwLock::new(BitVec::repeat(false, num_vectors));

        Self {
            max_level: AtomicUsize::new(0),
            m,
            m0,
            ef_construct,
            level_factor: 1.0 / (max(m, 2) as f64).ln(),
            use_heuristic,
            links_layers,
            entry_points: Mutex::new(EntryPoints::new(entry_points_num)),
            visited_pool: VisitedPool::new(),
            ready_list,
        }
    }

    pub fn new(
        num_vectors: usize, // Initial number of points in index
        m: usize,           // Expected M for non-first layer
        m0: usize,          // Expected M for first layer
        ef_construct: usize,
        entry_points_num: usize, // Depends on number of points
        use_heuristic: bool,
    ) -> Self {
        Self::new_with_params(
            num_vectors,
            m,
            m0,
            ef_construct,
            entry_points_num,
            use_heuristic,
            true,
        )
    }

    pub fn merge_from_other(&mut self, other: GraphLayersBuilder) {
        self.max_level = AtomicUsize::new(max(
            self.max_level.load(std::sync::atomic::Ordering::Relaxed),
            other.max_level.load(std::sync::atomic::Ordering::Relaxed),
        ));
        let mut visited_list = self.visited_pool.get(self.num_points());
        if other.links_layers.len() > self.links_layers.len() {
            self.links_layers
                .resize_with(other.links_layers.len(), Vec::new);
        }
        for (point_id, layers) in other.links_layers.into_iter().enumerate() {
            let current_layers = &mut self.links_layers[point_id];
            for (level, other_links) in layers.into_iter().enumerate() {
                if current_layers.len() <= level {
                    current_layers.push(other_links);
                } else {
                    let other_links = other_links.into_inner();
                    visited_list.next_iteration();
                    let mut current_links = current_layers[level].write();
                    current_links.iter().copied().for_each(|x| {
                        visited_list.check_and_update_visited(x);
                    });
                    for other_link in other_links
                        .into_iter()
                        .filter(|x| !visited_list.check_and_update_visited(*x))
                    {
                        current_links.push(other_link);
                    }
                }
            }
        }
        self.entry_points
            .lock()
            .merge_from_other(other.entry_points.into_inner());
    }

    fn num_points(&self) -> usize {
        self.links_layers.len()
    }

    /// Generate random level for a new point, according to geometric distribution
    pub fn get_random_layer<R>(&self, rng: &mut R) -> usize
    where
        R: Rng + ?Sized,
    {
        let distribution = Uniform::new(0.0, 1.0);
        let sample: f64 = rng.sample(distribution);
        let picked_level = -sample.ln() * self.level_factor;
        picked_level.round() as usize
    }

    fn get_point_level(&self, point_id: PointOffsetType) -> usize {
        self.links_layers[point_id as usize].len() - 1
    }

    pub fn set_levels(&mut self, point_id: PointOffsetType, level: usize) {
        if self.links_layers.len() <= point_id as usize {
            while self.links_layers.len() <= point_id as usize {
                self.links_layers.push(vec![]);
            }
        }
        let point_layers = &mut self.links_layers[point_id as usize];
        while point_layers.len() <= level {
            let links = Vec::with_capacity(self.m);
            point_layers.push(RwLock::new(links));
        }
        self.max_level
            .fetch_max(level, std::sync::atomic::Ordering::Relaxed);
    }

    /// Connect new point to links, so that links contains only closest points
    fn connect_new_point<F>(
        links: &mut LinkContainer,
        new_point_id: PointOffsetType,
        target_point_id: PointOffsetType,
        level_m: usize,
        mut score_internal: F,
    ) where
        F: FnMut(PointOffsetType, PointOffsetType) -> ScoreType,
    {
        // ToDo: binary search here ? (most likely does not worth it)
        let new_to_target = score_internal(target_point_id, new_point_id);

        let mut id_to_insert = links.len();
        for (i, &item) in links.iter().enumerate() {
            let target_to_link = score_internal(target_point_id, item);
            if target_to_link < new_to_target {
                id_to_insert = i;
                break;
            }
        }

        if links.len() < level_m {
            links.insert(id_to_insert, new_point_id);
        } else if id_to_insert != links.len() {
            links.pop();
            links.insert(id_to_insert, new_point_id);
        }
    }

    /// <https://github.com/nmslib/hnswlib/issues/99>
    fn select_candidate_with_heuristic_from_sorted<F>(
        candidates: impl Iterator<Item = ScoredPointOffset>,
        m: usize,
        mut score_internal: F,
    ) -> Vec<PointOffsetType>
    where
        F: FnMut(PointOffsetType, PointOffsetType) -> ScoreType,
    {
        let mut result_list = Vec::with_capacity(m);
        for current_closest in candidates {
            if result_list.len() >= m {
                break;
            }
            let mut is_good = true;
            for &selected_point in &result_list {
                let dist_to_already_selected = score_internal(current_closest.idx, selected_point);
                if dist_to_already_selected > current_closest.score {
                    is_good = false;
                    break;
                }
            }
            if is_good {
                result_list.push(current_closest.idx);
            }
        }

        result_list
    }

    /// <https://github.com/nmslib/hnswlib/issues/99>
    fn select_candidates_with_heuristic<F>(
        candidates: FixedLengthPriorityQueue<ScoredPointOffset>,
        m: usize,
        score_internal: F,
    ) -> Vec<PointOffsetType>
    where
        F: FnMut(PointOffsetType, PointOffsetType) -> ScoreType,
    {
        let closest_iter = candidates.into_iter();
        Self::select_candidate_with_heuristic_from_sorted(closest_iter, m, score_internal)
    }

    pub fn link_new_point(&self, point_id: PointOffsetType, mut points_scorer: FilteredScorer) {
        // Check if there is an suitable entry point
        //   - entry point level if higher or equal
        //   - it satisfies filters

        let level = self.get_point_level(point_id);

        let entry_point_opt = self
            .entry_points
            .lock()
            .get_entry_point(|point_id| points_scorer.check_vector(point_id));
        match entry_point_opt {
            // New point is a new empty entry (for this filter, at least)
            // We can't do much here, so just quit
            None => {}

            // Entry point found.
            Some(entry_point) => {
                let mut level_entry = if entry_point.level > level {
                    // The entry point is higher than a new point
                    // Let's find closest one on same level

                    // greedy search for a single closest point
                    self.search_entry(
                        entry_point.point_id,
                        entry_point.level,
                        level,
                        &mut points_scorer,
                    )
                } else {
                    ScoredPointOffset {
                        idx: entry_point.point_id,
                        score: points_scorer.score_internal(point_id, entry_point.point_id),
                    }
                };
                // minimal common level for entry points
                let linking_level = min(level, entry_point.level);

                for curr_level in (0..=linking_level).rev() {
                    let level_m = self.get_m(curr_level);
                    let mut visited_list = self.get_visited_list_from_pool();

                    visited_list.check_and_update_visited(level_entry.idx);

                    let mut search_context = SearchContext::new(level_entry, self.ef_construct);

                    self._search_on_level(
                        &mut search_context,
                        curr_level,
                        &mut visited_list,
                        &mut points_scorer,
                    );

                    if let Some(the_nearest) = search_context.nearest.iter().max() {
                        level_entry = *the_nearest;
                    }

                    let scorer = |a, b| points_scorer.score_internal(a, b);

                    if self.use_heuristic {
                        let selected_nearest = {
                            let mut existing_links =
                                self.links_layers[point_id as usize][curr_level].write();
                            {
                                let ready_list = self.ready_list.read();
                                for &existing_link in existing_links.iter() {
                                    if !visited_list.check(existing_link)
                                        && ready_list[existing_link as usize]
                                    {
                                        search_context.process_candidate(ScoredPointOffset {
                                            idx: existing_link,
                                            score: points_scorer.score_point(existing_link),
                                        });
                                    }
                                }
                            }

                            let selected_nearest = Self::select_candidates_with_heuristic(
                                search_context.nearest,
                                level_m,
                                scorer,
                            );
                            existing_links.clone_from(&selected_nearest);
                            selected_nearest
                        };

                        for &other_point in &selected_nearest {
                            let mut other_point_links =
                                self.links_layers[other_point as usize][curr_level].write();
                            if other_point_links.len() < level_m {
                                // If linked point is lack of neighbours
                                other_point_links.push(point_id);
                            } else {
                                let mut candidates = BinaryHeap::with_capacity(level_m + 1);
                                candidates.push(ScoredPointOffset {
                                    idx: point_id,
                                    score: scorer(point_id, other_point),
                                });
                                for other_point_link in
                                    other_point_links.iter().take(level_m).copied()
                                {
                                    candidates.push(ScoredPointOffset {
                                        idx: other_point_link,
                                        score: scorer(other_point_link, other_point),
                                    });
                                }
                                let selected_candidates =
                                    Self::select_candidate_with_heuristic_from_sorted(
                                        candidates.into_sorted_vec().into_iter().rev(),
                                        level_m,
                                        scorer,
                                    );
                                other_point_links.clear(); // this do not free memory, which is good
                                for selected in selected_candidates.iter().copied() {
                                    other_point_links.push(selected);
                                }
                            }
                        }
                    } else {
                        for nearest_point in &search_context.nearest {
                            {
                                let mut links =
                                    self.links_layers[point_id as usize][curr_level].write();
                                Self::connect_new_point(
                                    &mut links,
                                    nearest_point.idx,
                                    point_id,
                                    level_m,
                                    scorer,
                                );
                            }

                            {
                                let mut links = self.links_layers[nearest_point.idx as usize]
                                    [curr_level]
                                    .write();
                                Self::connect_new_point(
                                    &mut links,
                                    point_id,
                                    nearest_point.idx,
                                    level_m,
                                    scorer,
                                );
                            }
                        }
                    }
                }
            }
        }
        self.ready_list.write().set(point_id as usize, true);
        self.entry_points
            .lock()
            .new_point(point_id, level, |point_id| {
                points_scorer.check_vector(point_id)
            });
    }

    /// This function returns average number of links per node in HNSW graph
    /// on specified level.
    ///
    /// Useful for:
    /// - estimating memory consumption
    /// - percolation threshold estimation
    /// - debugging
    pub fn get_average_connectivity_on_level(&self, level: usize) -> f32 {
        let mut sum = 0;
        let mut count = 0;
        for links in self.links_layers.iter() {
            if links.len() > level {
                sum += links[level].read().len();
                count += 1;
            }
        }
        if count == 0 {
            0.0
        } else {
            sum as f32 / count as f32
        }
    }
}

#[cfg(test)]
mod tests {
    use itertools::Itertools;
    use rand::prelude::StdRng;
    use rand::seq::SliceRandom;
    use rand::SeedableRng;

    use super::*;
    use crate::data_types::vectors::{DenseVector, VectorElementType};
    use crate::fixtures::index_fixtures::{
        random_vector, FakeFilterContext, TestRawScorerProducer,
    };
    use crate::index::hnsw_index::graph_links::GraphLinksRam;
    use crate::index::hnsw_index::tests::create_graph_layer_fixture;
    use crate::spaces::metric::Metric;
    use crate::spaces::simple::{CosineMetric, EuclidMetric};
    use crate::vector_storage::chunked_vector_storage::VectorOffsetType;

    const M: usize = 8;

    #[cfg(not(windows))]
    fn parallel_graph_build<TMetric: Metric<VectorElementType> + Sync + Send, R>(
        num_vectors: usize,
        dim: usize,
        use_heuristic: bool,
        rng: &mut R,
    ) -> (TestRawScorerProducer<TMetric>, GraphLayersBuilder)
    where
        R: Rng + ?Sized,
    {
        use rayon::prelude::{IntoParallelIterator, ParallelIterator};
        let pool = rayon::ThreadPoolBuilder::new()
            .num_threads(2)
            .build()
            .unwrap();

        let m = M;
        let ef_construct = 16;
        let entry_points_num = 10;

        let vector_holder = TestRawScorerProducer::<TMetric>::new(dim, num_vectors, rng);

        let mut graph_layers = GraphLayersBuilder::new(
            num_vectors,
            m,
            m * 2,
            ef_construct,
            entry_points_num,
            use_heuristic,
        );

        for idx in 0..(num_vectors as PointOffsetType) {
            let level = graph_layers.get_random_layer(rng);
            graph_layers.set_levels(idx, level);
        }
        pool.install(|| {
            (0..(num_vectors as PointOffsetType))
                .into_par_iter()
                .for_each(|idx| {
                    let fake_filter_context = FakeFilterContext {};
                    let added_vector = vector_holder.vectors.get(idx as VectorOffsetType).to_vec();
                    let raw_scorer = vector_holder.get_raw_scorer(added_vector).unwrap();
                    let scorer =
                        FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
                    graph_layers.link_new_point(idx, scorer);
                    raw_scorer.take_hardware_counter().discard_results();
                });
        });

        (vector_holder, graph_layers)
    }

    fn create_graph_layer<TMetric: Metric<VectorElementType>, R>(
        num_vectors: usize,
        dim: usize,
        use_heuristic: bool,
        rng: &mut R,
    ) -> (TestRawScorerProducer<TMetric>, GraphLayersBuilder)
    where
        R: Rng + ?Sized,
    {
        let m = M;
        let ef_construct = 16;
        let entry_points_num = 10;

        let vector_holder = TestRawScorerProducer::<TMetric>::new(dim, num_vectors, rng);

        let mut graph_layers = GraphLayersBuilder::new(
            num_vectors,
            m,
            m * 2,
            ef_construct,
            entry_points_num,
            use_heuristic,
        );

        for idx in 0..(num_vectors as PointOffsetType) {
            let level = graph_layers.get_random_layer(rng);
            graph_layers.set_levels(idx, level);
        }

        for idx in 0..(num_vectors as PointOffsetType) {
            let fake_filter_context = FakeFilterContext {};
            let added_vector = vector_holder.vectors.get(idx as VectorOffsetType).to_vec();
            let raw_scorer = vector_holder.get_raw_scorer(added_vector.clone()).unwrap();
            let scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
            graph_layers.link_new_point(idx, scorer);
            raw_scorer.take_hardware_counter().discard_results();
        }

        (vector_holder, graph_layers)
    }

    #[cfg(not(windows))] // https://github.com/qdrant/qdrant/issues/1452
    #[test]
    fn test_parallel_graph_build() {
        let num_vectors = 1000;
        let dim = 8;

        let mut rng = StdRng::seed_from_u64(42);
        type M = CosineMetric;

        // let (vector_holder, graph_layers_builder) =
        //     create_graph_layer::<M, _>(num_vectors, dim, false, &mut rng);

        let (vector_holder, graph_layers_builder) =
            parallel_graph_build::<M, _>(num_vectors, dim, false, &mut rng);

        let main_entry = graph_layers_builder
            .entry_points
            .lock()
            .get_entry_point(|_x| true)
            .expect("Expect entry point to exists");

        assert!(main_entry.level > 0);

        let num_levels = graph_layers_builder
            .links_layers
            .iter()
            .map(|x| x.len())
            .max()
            .unwrap();
        assert_eq!(main_entry.level + 1, num_levels);

        let total_links_0: usize = graph_layers_builder
            .links_layers
            .iter()
            .map(|x| x[0].read().len())
            .sum();

        assert!(total_links_0 > 0);

        eprintln!("total_links_0 = {total_links_0:#?}");
        eprintln!("num_vectors = {num_vectors:#?}");

        assert!(total_links_0 as f64 / num_vectors as f64 > M as f64);

        let top = 5;
        let query = random_vector(&mut rng, dim);
        let processed_query = <M as Metric<VectorElementType>>::preprocess(query.clone());
        let mut reference_top = FixedLengthPriorityQueue::new(top);
        for idx in 0..vector_holder.vectors.len() as PointOffsetType {
            let vec = &vector_holder.vectors.get(idx as VectorOffsetType);
            reference_top.push(ScoredPointOffset {
                idx,
                score: M::similarity(vec, &processed_query),
            });
        }

        let graph = graph_layers_builder
            .into_graph_layers::<GraphLinksRam>(None)
            .unwrap();

        let fake_filter_context = FakeFilterContext {};
        let raw_scorer = vector_holder.get_raw_scorer(query).unwrap();
        let scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
        let ef = 16;
        let graph_search = graph.search(top, ef, scorer, None);

        raw_scorer.take_hardware_counter().discard_results();
        assert_eq!(reference_top.into_vec(), graph_search);
    }

    #[test]
    fn test_add_points() {
        let num_vectors = 1000;
        let dim = 8;

        let mut rng = StdRng::seed_from_u64(42);
        let mut rng2 = StdRng::seed_from_u64(42);

        type M = CosineMetric;

        let (vector_holder, graph_layers_builder) =
            create_graph_layer::<M, _>(num_vectors, dim, false, &mut rng);

        let (_vector_holder_orig, graph_layers_orig) =
            create_graph_layer_fixture::<M, _>(num_vectors, M, dim, false, &mut rng2, None);

        // check is graph_layers_builder links are equal to graph_layers_orig
        let orig_len = graph_layers_orig.links.num_points();
        let builder_len = graph_layers_builder.links_layers.len();

        assert_eq!(orig_len, builder_len);

        for idx in 0..builder_len {
            let links_orig = &graph_layers_orig
                .links
                .links(idx as PointOffsetType, 0)
                .collect_vec();
            let links_builder = graph_layers_builder.links_layers[idx][0].read();
            let link_container_from_builder = links_builder.iter().copied().collect::<Vec<_>>();
            assert_eq!(links_orig, &link_container_from_builder);
        }

        let main_entry = graph_layers_builder
            .entry_points
            .lock()
            .get_entry_point(|_x| true)
            .expect("Expect entry point to exists");

        assert!(main_entry.level > 0);

        let num_levels = graph_layers_builder
            .links_layers
            .iter()
            .map(|x| x.len())
            .max()
            .unwrap();
        assert_eq!(main_entry.level + 1, num_levels);

        let total_links_0: usize = graph_layers_builder
            .links_layers
            .iter()
            .map(|x| x[0].read().len())
            .sum();

        assert!(total_links_0 > 0);

        eprintln!("total_links_0 = {total_links_0:#?}");
        eprintln!("num_vectors = {num_vectors:#?}");

        assert!(total_links_0 as f64 / num_vectors as f64 > M as f64);

        let top = 5;
        let query = random_vector(&mut rng, dim);
        let processed_query = <M as Metric<VectorElementType>>::preprocess(query.clone());
        let mut reference_top = FixedLengthPriorityQueue::new(top);
        for idx in 0..vector_holder.vectors.len() as PointOffsetType {
            let vec = &vector_holder.vectors.get(idx as VectorOffsetType);
            reference_top.push(ScoredPointOffset {
                idx,
                score: M::similarity(vec, &processed_query),
            });
        }

        let graph = graph_layers_builder
            .into_graph_layers::<GraphLinksRam>(None)
            .unwrap();

        let fake_filter_context = FakeFilterContext {};
        let raw_scorer = vector_holder.get_raw_scorer(query).unwrap();
        let scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
        let ef = 16;
        let graph_search = graph.search(top, ef, scorer, None);
        raw_scorer.take_hardware_counter().discard_results();
        assert_eq!(reference_top.into_vec(), graph_search);
    }

    #[test]
    #[ignore]
    fn test_hnsw_graph_properties() {
        const NUM_VECTORS: usize = 5_000;
        const DIM: usize = 16;
        const M: usize = 16;
        const EF_CONSTRUCT: usize = 64;
        const USE_HEURISTIC: bool = true;

        let mut rng = StdRng::seed_from_u64(42);

        let vector_holder = TestRawScorerProducer::<CosineMetric>::new(DIM, NUM_VECTORS, &mut rng);
        let mut graph_layers_builder =
            GraphLayersBuilder::new(NUM_VECTORS, M, M * 2, EF_CONSTRUCT, 10, USE_HEURISTIC);
        let fake_filter_context = FakeFilterContext {};
        for idx in 0..(NUM_VECTORS as PointOffsetType) {
            let added_vector = vector_holder.vectors.get(idx as VectorOffsetType).to_vec();
            let raw_scorer = vector_holder.get_raw_scorer(added_vector).unwrap();
            let scorer = FilteredScorer::new(raw_scorer.as_ref(), Some(&fake_filter_context));
            let level = graph_layers_builder.get_random_layer(&mut rng);
            graph_layers_builder.set_levels(idx, level);
            graph_layers_builder.link_new_point(idx, scorer);
            raw_scorer.take_hardware_counter().discard_results();
        }
        let graph_layers = graph_layers_builder
            .into_graph_layers::<GraphLinksRam>(None)
            .unwrap();

        let num_points = graph_layers.links.num_points();
        eprintln!("number_points = {num_points:#?}");

        let max_layer = (0..NUM_VECTORS)
            .map(|i| graph_layers.links.point_level(i as PointOffsetType))
            .max()
            .unwrap();
        eprintln!("max_layer = {:#?}", max_layer + 1);

        let layers910 = graph_layers.links.point_level(910);
        let links910 = (0..layers910 + 1)
            .map(|i| graph_layers.links.links(910, i).collect_vec())
            .collect::<Vec<_>>();
        eprintln!("graph_layers.links_layers[910] = {links910:#?}",);

        let total_edges: usize = (0..NUM_VECTORS)
            .map(|i| graph_layers.links.links(i as PointOffsetType, 0).count())
            .sum();
        let avg_connectivity = total_edges as f64 / NUM_VECTORS as f64;
        eprintln!("avg_connectivity = {avg_connectivity:#?}");
    }

    #[test]
    #[ignore]
    fn test_candidate_selection_heuristics() {
        const NUM_VECTORS: usize = 100;
        const DIM: usize = 16;
        const M: usize = 16;

        let mut rng = StdRng::seed_from_u64(42);

        let vector_holder = TestRawScorerProducer::<EuclidMetric>::new(DIM, NUM_VECTORS, &mut rng);

        let mut candidates: FixedLengthPriorityQueue<ScoredPointOffset> =
            FixedLengthPriorityQueue::new(NUM_VECTORS);

        let new_vector_to_insert = random_vector(&mut rng, DIM);

        let scorer = vector_holder.get_raw_scorer(new_vector_to_insert).unwrap();

        for i in 0..NUM_VECTORS {
            candidates.push(ScoredPointOffset {
                idx: i as PointOffsetType,
                score: scorer.score_point(i as PointOffsetType),
            });
        }

        let sorted_candidates = candidates.into_vec();

        for x in sorted_candidates.iter().take(M) {
            eprintln!("sorted_candidates = ({}, {})", x.idx, x.score);
        }

        let selected_candidates = GraphLayersBuilder::select_candidate_with_heuristic_from_sorted(
            sorted_candidates.into_iter(),
            M,
            |a, b| scorer.score_internal(a, b),
        );

        for x in selected_candidates.iter() {
            eprintln!("selected_candidates = {x}");
        }

        scorer.take_hardware_counter().discard_results();
    }

    #[test]
    fn test_connect_new_point() {
        let num_points = 10;
        let m = 6;
        let ef_construct = 32;

        // See illustration in docs
        let points: Vec<DenseVector> = vec![
            vec![21.79, 7.18],  // Target
            vec![20.58, 5.46],  // 1  B - yes
            vec![21.19, 4.51],  // 2  C
            vec![24.73, 8.24],  // 3  D - yes
            vec![24.55, 9.98],  // 4  E
            vec![26.11, 6.85],  // 5  F
            vec![17.64, 11.14], // 6  G - yes
            vec![14.97, 11.52], // 7  I
            vec![14.97, 9.60],  // 8  J
            vec![16.23, 14.32], // 9  H
            vec![12.69, 19.13], // 10 K
        ];

        let scorer = |a: PointOffsetType, b: PointOffsetType| {
            -((points[a as usize][0] - points[b as usize][0]).powi(2)
                + (points[a as usize][1] - points[b as usize][1]).powi(2))
            .sqrt()
        };

        let mut insert_ids = (1..points.len() as PointOffsetType).collect_vec();

        let mut candidates = FixedLengthPriorityQueue::new(insert_ids.len());
        for &id in &insert_ids {
            candidates.push(ScoredPointOffset {
                idx: id,
                score: scorer(0, id),
            });
        }

        let res = GraphLayersBuilder::select_candidates_with_heuristic(candidates, m, scorer);

        assert_eq!(&res, &vec![1, 3, 6]);

        let mut rng = StdRng::seed_from_u64(42);

        let graph_layers_builder = GraphLayersBuilder::new(num_points, m, m, ef_construct, 1, true);
        insert_ids.shuffle(&mut rng);
        for &id in &insert_ids {
            let level_m = graph_layers_builder.get_m(0);
            let mut links = graph_layers_builder.links_layers[0][0].write();
            GraphLayersBuilder::connect_new_point(&mut links, id, 0, level_m, scorer)
        }
        let mut result = Vec::new();
        graph_layers_builder.links_layers[0][0]
            .read()
            .iter()
            .for_each(|x| result.push(*x));
        assert_eq!(&result, &vec![1, 2, 3, 4, 5, 6]);
    }
}