Spaces:
Build error
Build error
File size: 39,471 Bytes
84d2a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 |
use std::fs::create_dir_all;
use std::ops::Deref as _;
use std::path::{Path, PathBuf};
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
use std::thread;
use atomic_refcell::AtomicRefCell;
use bitvec::prelude::BitSlice;
use bitvec::vec::BitVec;
use common::counter::hardware_counter::HardwareCounterCell;
#[cfg(target_os = "linux")]
use common::cpu::linux_low_thread_priority;
use common::cpu::{get_num_cpus, CpuPermit};
use common::types::{PointOffsetType, ScoredPointOffset, TelemetryDetail};
use log::debug;
use memory::mmap_ops;
use parking_lot::Mutex;
use rand::thread_rng;
use rayon::prelude::*;
use rayon::ThreadPool;
use super::graph_links::{GraphLinks, GraphLinksMmap};
use crate::common::operation_error::{check_process_stopped, OperationError, OperationResult};
use crate::common::operation_time_statistics::{
OperationDurationsAggregator, ScopeDurationMeasurer,
};
use crate::common::BYTES_IN_KB;
use crate::data_types::query_context::VectorQueryContext;
use crate::data_types::vectors::{QueryVector, VectorInternal, VectorRef};
use crate::id_tracker::IdTrackerSS;
use crate::index::hnsw_index::build_condition_checker::BuildConditionChecker;
use crate::index::hnsw_index::config::HnswGraphConfig;
use crate::index::hnsw_index::graph_layers::GraphLayers;
use crate::index::hnsw_index::graph_layers_builder::GraphLayersBuilder;
use crate::index::hnsw_index::point_scorer::FilteredScorer;
use crate::index::query_estimator::adjust_to_available_vectors;
use crate::index::sample_estimation::sample_check_cardinality;
use crate::index::struct_payload_index::StructPayloadIndex;
use crate::index::visited_pool::{VisitedListHandle, VisitedPool};
use crate::index::{PayloadIndex, VectorIndex};
use crate::telemetry::VectorIndexSearchesTelemetry;
use crate::types::Condition::Field;
use crate::types::{
default_quantization_ignore_value, default_quantization_oversampling_value, FieldCondition,
Filter, HnswConfig, QuantizationSearchParams, SearchParams,
};
use crate::vector_storage::quantized::quantized_vectors::QuantizedVectors;
use crate::vector_storage::query::DiscoveryQuery;
use crate::vector_storage::{
new_raw_scorer, new_stoppable_raw_scorer, RawScorer, VectorStorage, VectorStorageEnum,
};
const HNSW_USE_HEURISTIC: bool = true;
/// Build first N points in HNSW graph using only a single thread, to avoid
/// disconnected components in the graph.
#[cfg(debug_assertions)]
const SINGLE_THREADED_HNSW_BUILD_THRESHOLD: usize = 32;
#[cfg(not(debug_assertions))]
const SINGLE_THREADED_HNSW_BUILD_THRESHOLD: usize = 256;
#[derive(Debug)]
pub struct HNSWIndex<TGraphLinks: GraphLinks> {
id_tracker: Arc<AtomicRefCell<IdTrackerSS>>,
vector_storage: Arc<AtomicRefCell<VectorStorageEnum>>,
quantized_vectors: Arc<AtomicRefCell<Option<QuantizedVectors>>>,
payload_index: Arc<AtomicRefCell<StructPayloadIndex>>,
config: HnswGraphConfig,
path: PathBuf,
graph: GraphLayers<TGraphLinks>,
searches_telemetry: HNSWSearchesTelemetry,
}
#[derive(Debug)]
struct HNSWSearchesTelemetry {
unfiltered_plain: Arc<Mutex<OperationDurationsAggregator>>,
filtered_plain: Arc<Mutex<OperationDurationsAggregator>>,
unfiltered_hnsw: Arc<Mutex<OperationDurationsAggregator>>,
small_cardinality: Arc<Mutex<OperationDurationsAggregator>>,
large_cardinality: Arc<Mutex<OperationDurationsAggregator>>,
exact_filtered: Arc<Mutex<OperationDurationsAggregator>>,
exact_unfiltered: Arc<Mutex<OperationDurationsAggregator>>,
}
pub struct HnswIndexOpenArgs<'a> {
pub path: &'a Path,
pub id_tracker: Arc<AtomicRefCell<IdTrackerSS>>,
pub vector_storage: Arc<AtomicRefCell<VectorStorageEnum>>,
pub quantized_vectors: Arc<AtomicRefCell<Option<QuantizedVectors>>>,
pub payload_index: Arc<AtomicRefCell<StructPayloadIndex>>,
pub hnsw_config: HnswConfig,
pub permit: Option<Arc<CpuPermit>>,
pub stopped: &'a AtomicBool,
}
impl<TGraphLinks: GraphLinks> HNSWIndex<TGraphLinks> {
pub fn open(args: HnswIndexOpenArgs<'_>) -> OperationResult<Self> {
let HnswIndexOpenArgs {
path,
id_tracker,
vector_storage,
quantized_vectors,
payload_index,
hnsw_config,
permit,
stopped,
} = args;
create_dir_all(path)?;
let config_path = HnswGraphConfig::get_config_path(path);
let graph_path = GraphLayers::<TGraphLinks>::get_path(path);
let graph_links_path = GraphLayers::<TGraphLinks>::get_links_path(path);
let (config, graph) = if graph_path.exists() {
let config = if config_path.exists() {
HnswGraphConfig::load(&config_path)?
} else {
let vector_storage = vector_storage.borrow();
let available_vectors = vector_storage.available_vector_count();
let full_scan_threshold = vector_storage
.size_of_available_vectors_in_bytes()
.checked_div(available_vectors)
.and_then(|avg_vector_size| {
hnsw_config
.full_scan_threshold
.saturating_mul(BYTES_IN_KB)
.checked_div(avg_vector_size)
})
.unwrap_or(1);
HnswGraphConfig::new(
hnsw_config.m,
hnsw_config.ef_construct,
full_scan_threshold,
hnsw_config.max_indexing_threads,
hnsw_config.payload_m,
available_vectors,
)
};
(config, GraphLayers::load(&graph_path, &graph_links_path)?)
} else {
let num_cpus = match permit {
Some(p) => p.num_cpus as usize,
None => {
log::warn!("Rebuilding HNSW index");
// We have no CPU permit, meaning this call is not triggered by the segment
// optimizer which is supposed to be the only entity that builds an HNSW index.
// This should never be executed unless files are removed manually.
debug_assert!(false);
get_num_cpus()
}
};
let (config, graph) = Self::build_index(
path,
id_tracker.as_ref().borrow().deref(),
&vector_storage.borrow(),
&quantized_vectors.borrow(),
&payload_index.borrow(),
&hnsw_config,
num_cpus,
stopped,
)?;
config.save(&config_path)?;
graph.save(&graph_path)?;
(config, graph)
};
Ok(HNSWIndex {
id_tracker,
vector_storage,
quantized_vectors,
payload_index,
config,
path: path.to_owned(),
graph,
searches_telemetry: HNSWSearchesTelemetry {
unfiltered_hnsw: OperationDurationsAggregator::new(),
unfiltered_plain: OperationDurationsAggregator::new(),
filtered_plain: OperationDurationsAggregator::new(),
small_cardinality: OperationDurationsAggregator::new(),
large_cardinality: OperationDurationsAggregator::new(),
exact_filtered: OperationDurationsAggregator::new(),
exact_unfiltered: OperationDurationsAggregator::new(),
},
})
}
#[cfg(test)]
pub(super) fn graph(&self) -> &GraphLayers<TGraphLinks> {
&self.graph
}
pub fn get_quantized_vectors(&self) -> Arc<AtomicRefCell<Option<QuantizedVectors>>> {
self.quantized_vectors.clone()
}
#[allow(clippy::too_many_arguments)]
fn build_index(
path: &Path,
id_tracker: &IdTrackerSS,
vector_storage: &VectorStorageEnum,
quantized_vectors: &Option<QuantizedVectors>,
payload_index: &StructPayloadIndex,
hnsw_config: &HnswConfig,
num_cpus: usize,
stopped: &AtomicBool,
) -> OperationResult<(HnswGraphConfig, GraphLayers<TGraphLinks>)> {
let total_vector_count = vector_storage.total_vector_count();
let full_scan_threshold = vector_storage
.size_of_available_vectors_in_bytes()
.checked_div(total_vector_count)
.and_then(|avg_vector_size| {
hnsw_config
.full_scan_threshold
.saturating_mul(BYTES_IN_KB)
.checked_div(avg_vector_size)
})
.unwrap_or(1);
let mut config = HnswGraphConfig::new(
hnsw_config.m,
hnsw_config.ef_construct,
full_scan_threshold,
hnsw_config.max_indexing_threads,
hnsw_config.payload_m,
total_vector_count,
);
// Build main index graph
let mut rng = thread_rng();
let deleted_bitslice = vector_storage.deleted_vector_bitslice();
debug!("building HNSW for {total_vector_count} vectors with {num_cpus} CPUs");
let mut graph_layers_builder = GraphLayersBuilder::new(
total_vector_count,
config.m,
config.m0,
config.ef_construct,
std::cmp::max(
1,
total_vector_count
.checked_div(full_scan_threshold)
.unwrap_or(0)
* 10,
),
HNSW_USE_HEURISTIC,
);
let pool = rayon::ThreadPoolBuilder::new()
.thread_name(|idx| format!("hnsw-build-{idx}"))
.num_threads(num_cpus)
.spawn_handler(|thread| {
let mut b = thread::Builder::new();
if let Some(name) = thread.name() {
b = b.name(name.to_owned());
}
if let Some(stack_size) = thread.stack_size() {
b = b.stack_size(stack_size);
}
b.spawn(|| {
// On Linux, use lower thread priority so we interfere less with serving traffic
#[cfg(target_os = "linux")]
if let Err(err) = linux_low_thread_priority() {
log::debug!(
"Failed to set low thread priority for HNSW building, ignoring: {err}"
);
}
thread.run()
})?;
Ok(())
})
.build()?;
for vector_id in id_tracker.iter_ids_excluding(deleted_bitslice) {
check_process_stopped(stopped)?;
let level = graph_layers_builder.get_random_layer(&mut rng);
graph_layers_builder.set_levels(vector_id, level);
}
let mut indexed_vectors = 0;
if config.m > 0 {
let mut ids_iterator = id_tracker.iter_ids_excluding(deleted_bitslice);
let first_few_ids: Vec<_> = ids_iterator
.by_ref()
.take(SINGLE_THREADED_HNSW_BUILD_THRESHOLD)
.collect();
let ids: Vec<_> = ids_iterator.collect();
indexed_vectors = ids.len() + first_few_ids.len();
let insert_point = |vector_id| {
check_process_stopped(stopped)?;
let vector = vector_storage.get_vector(vector_id);
let vector = vector.as_vec_ref().into();
let raw_scorer = if let Some(quantized_storage) = quantized_vectors.as_ref() {
quantized_storage.raw_scorer(
vector,
id_tracker.deleted_point_bitslice(),
vector_storage.deleted_vector_bitslice(),
stopped,
)
} else {
new_raw_scorer(vector, vector_storage, id_tracker.deleted_point_bitslice())
}?;
let points_scorer = FilteredScorer::new(raw_scorer.as_ref(), None);
graph_layers_builder.link_new_point(vector_id, points_scorer);
// Ignore hardware counter, for internal operations
raw_scorer.take_hardware_counter().discard_results();
Ok::<_, OperationError>(())
};
for vector_id in first_few_ids {
insert_point(vector_id)?;
}
if !ids.is_empty() {
pool.install(|| ids.into_par_iter().try_for_each(insert_point))?;
}
debug!("finish main graph");
} else {
debug!("skip building main HNSW graph");
}
let visited_pool = VisitedPool::new();
let mut block_filter_list = visited_pool.get(total_vector_count);
let payload_m = config.payload_m.unwrap_or(config.m);
if payload_m > 0 {
// Calculate true average number of links per vertex in the HNSW graph
// to better estimate percolation threshold
let average_links_per_0_level =
graph_layers_builder.get_average_connectivity_on_level(0);
let average_links_per_0_level_int = (average_links_per_0_level as usize).max(1);
let mut indexed_vectors_set = if config.m != 0 {
// Every vector is already indexed in the main graph, so skip counting.
BitVec::new()
} else {
BitVec::repeat(false, total_vector_count)
};
for (field, _) in payload_index.indexed_fields() {
debug!("building additional index for field {}", &field);
// It is expected, that graph will become disconnected less than
// $1/m$ points left.
// So blocks larger than $1/m$ are not needed.
// We add multiplier for the extra safety.
let percolation_multiplier = 4;
let max_block_size = if config.m > 0 {
total_vector_count / average_links_per_0_level_int * percolation_multiplier
} else {
usize::MAX
};
for payload_block in payload_index.payload_blocks(&field, full_scan_threshold) {
check_process_stopped(stopped)?;
if payload_block.cardinality > max_block_size {
continue;
}
// ToDo: reuse graph layer for same payload
let mut additional_graph = GraphLayersBuilder::new_with_params(
total_vector_count,
payload_m,
config.payload_m0.unwrap_or(config.m0),
config.ef_construct,
1,
HNSW_USE_HEURISTIC,
false,
);
Self::build_filtered_graph(
id_tracker,
vector_storage,
quantized_vectors,
payload_index,
&pool,
stopped,
&mut additional_graph,
payload_block.condition,
&mut block_filter_list,
&mut indexed_vectors_set,
)?;
graph_layers_builder.merge_from_other(additional_graph);
}
}
let indexed_payload_vectors = indexed_vectors_set.count_ones();
debug_assert!(indexed_vectors >= indexed_payload_vectors || config.m == 0);
indexed_vectors = indexed_vectors.max(indexed_payload_vectors);
debug_assert!(indexed_payload_vectors <= total_vector_count);
} else {
debug!("skip building additional HNSW links");
}
config.indexed_vector_count.replace(indexed_vectors);
let graph_links_path = GraphLayers::<TGraphLinks>::get_links_path(path);
let graph: GraphLayers<TGraphLinks> =
graph_layers_builder.into_graph_layers(Some(&graph_links_path))?;
#[cfg(debug_assertions)]
{
for (idx, deleted) in deleted_bitslice.iter().enumerate() {
if *deleted {
debug_assert!(graph
.links
.links(idx as PointOffsetType, 0)
.next()
.is_none());
}
}
}
debug!("finish additional payload field indexing");
Ok((config, graph))
}
#[allow(clippy::too_many_arguments)]
fn build_filtered_graph(
id_tracker: &IdTrackerSS,
vector_storage: &VectorStorageEnum,
quantized_vectors: &Option<QuantizedVectors>,
payload_index: &StructPayloadIndex,
pool: &ThreadPool,
stopped: &AtomicBool,
graph_layers_builder: &mut GraphLayersBuilder,
condition: FieldCondition,
block_filter_list: &mut VisitedListHandle,
indexed_vectors_set: &mut BitVec,
) -> OperationResult<()> {
block_filter_list.next_iteration();
let filter = Filter::new_must(Field(condition));
let deleted_bitslice = vector_storage.deleted_vector_bitslice();
let cardinality_estimation = payload_index.estimate_cardinality(&filter);
let points_to_index: Vec<_> = payload_index
.iter_filtered_points(&filter, id_tracker, &cardinality_estimation)
.filter(|&point_id| {
!deleted_bitslice
.get(point_id as usize)
.map(|x| *x)
.unwrap_or(false)
})
.collect();
for block_point_id in points_to_index.iter().copied() {
block_filter_list.check_and_update_visited(block_point_id);
if !indexed_vectors_set.is_empty() {
indexed_vectors_set.set(block_point_id as usize, true);
}
}
let insert_points = |block_point_id| {
check_process_stopped(stopped)?;
let vector = vector_storage.get_vector(block_point_id);
let vector = vector.as_vec_ref().into();
let raw_scorer = match quantized_vectors.as_ref() {
Some(quantized_storage) => quantized_storage.raw_scorer(
vector,
id_tracker.deleted_point_bitslice(),
deleted_bitslice,
stopped,
),
None => new_raw_scorer(vector, vector_storage, id_tracker.deleted_point_bitslice()),
}?;
let block_condition_checker = BuildConditionChecker {
filter_list: block_filter_list,
current_point: block_point_id,
};
let points_scorer =
FilteredScorer::new(raw_scorer.as_ref(), Some(&block_condition_checker));
graph_layers_builder.link_new_point(block_point_id, points_scorer);
// Ignore hardware counter, for internal operations
raw_scorer.take_hardware_counter().discard_results();
Ok::<_, OperationError>(())
};
let first_points = points_to_index
.len()
.min(SINGLE_THREADED_HNSW_BUILD_THRESHOLD);
// First index points in single thread so ensure warm start for parallel indexing process
for point_id in points_to_index[..first_points].iter().copied() {
insert_points(point_id)?;
}
// Once initial structure is built, index remaining points in parallel
// So that each thread will insert points in different parts of the graph,
// it is less likely that they will compete for the same locks
if points_to_index.len() > first_points {
pool.install(|| {
points_to_index
.into_par_iter()
.skip(first_points)
.try_for_each(insert_points)
})?;
}
Ok(())
}
fn search_with_graph(
&self,
vector: &QueryVector,
filter: Option<&Filter>,
top: usize,
params: Option<&SearchParams>,
custom_entry_points: Option<&[PointOffsetType]>,
vector_query_context: &VectorQueryContext,
) -> OperationResult<Vec<ScoredPointOffset>> {
let ef = params
.and_then(|params| params.hnsw_ef)
.unwrap_or(self.config.ef);
let is_stopped = vector_query_context.is_stopped();
let id_tracker = self.id_tracker.borrow();
let payload_index = self.payload_index.borrow();
let vector_storage = self.vector_storage.borrow();
let quantized_vectors = self.quantized_vectors.borrow();
let deleted_points = vector_query_context
.deleted_points()
.unwrap_or_else(|| id_tracker.deleted_point_bitslice());
let raw_scorer = Self::construct_search_scorer(
vector,
&vector_storage,
quantized_vectors.as_ref(),
deleted_points,
params,
&is_stopped,
)?;
let oversampled_top = Self::get_oversampled_top(quantized_vectors.as_ref(), params, top);
let filter_context = filter.map(|f| payload_index.filter_context(f));
let points_scorer = FilteredScorer::new(raw_scorer.as_ref(), filter_context.as_deref());
let search_result =
self.graph
.search(oversampled_top, ef, points_scorer, custom_entry_points);
let hw_counter = HardwareCounterCell::new();
let res = self.postprocess_search_result(
search_result,
vector,
params,
top,
&is_stopped,
&hw_counter,
)?;
vector_query_context.apply_hardware_counter(raw_scorer.take_hardware_counter());
vector_query_context.apply_hardware_counter(hw_counter);
Ok(res)
}
fn search_vectors_with_graph(
&self,
vectors: &[&QueryVector],
filter: Option<&Filter>,
top: usize,
params: Option<&SearchParams>,
vector_query_context: &VectorQueryContext,
) -> OperationResult<Vec<Vec<ScoredPointOffset>>> {
vectors
.iter()
.map(|&vector| match vector {
QueryVector::Discovery(discovery_query) => self.discovery_search_with_graph(
discovery_query.clone(),
filter,
top,
params,
vector_query_context,
),
other => {
self.search_with_graph(other, filter, top, params, None, vector_query_context)
}
})
.collect()
}
fn search_plain_iterator(
&self,
vector: &QueryVector,
points: &mut dyn Iterator<Item = PointOffsetType>,
top: usize,
params: Option<&SearchParams>,
vector_query_context: &VectorQueryContext,
) -> OperationResult<Vec<ScoredPointOffset>> {
let id_tracker = self.id_tracker.borrow();
let vector_storage = self.vector_storage.borrow();
let quantized_vectors = self.quantized_vectors.borrow();
let deleted_points = vector_query_context
.deleted_points()
.unwrap_or_else(|| id_tracker.deleted_point_bitslice());
let is_stopped = vector_query_context.is_stopped();
let raw_scorer = Self::construct_search_scorer(
vector,
&vector_storage,
quantized_vectors.as_ref(),
deleted_points,
params,
&is_stopped,
)?;
let oversampled_top = Self::get_oversampled_top(quantized_vectors.as_ref(), params, top);
let search_result = raw_scorer.peek_top_iter(points, oversampled_top);
vector_query_context.apply_hardware_counter(raw_scorer.take_hardware_counter());
let hw_counter = HardwareCounterCell::new();
let res = self.postprocess_search_result(
search_result,
vector,
params,
top,
&is_stopped,
&hw_counter,
)?;
vector_query_context.apply_hardware_counter(hw_counter);
Ok(res)
}
fn search_plain(
&self,
vector: &QueryVector,
filtered_points: &[PointOffsetType],
top: usize,
params: Option<&SearchParams>,
vector_query_context: &VectorQueryContext,
) -> OperationResult<Vec<ScoredPointOffset>> {
self.search_plain_iterator(
vector,
&mut filtered_points.iter().copied(),
top,
params,
vector_query_context,
)
}
fn search_plain_unfiltered(
&self,
vector: &QueryVector,
top: usize,
params: Option<&SearchParams>,
vector_query_context: &VectorQueryContext,
) -> OperationResult<Vec<ScoredPointOffset>> {
let id_tracker = self.id_tracker.borrow();
let mut ids_iterator = id_tracker.iter_internal();
self.search_plain_iterator(vector, &mut ids_iterator, top, params, vector_query_context)
}
fn search_vectors_plain(
&self,
vectors: &[&QueryVector],
filter: &Filter,
top: usize,
params: Option<&SearchParams>,
vector_query_context: &VectorQueryContext,
) -> OperationResult<Vec<Vec<ScoredPointOffset>>> {
let payload_index = self.payload_index.borrow();
// share filtered points for all query vectors
let filtered_points = payload_index.query_points(filter);
vectors
.iter()
.map(|vector| {
self.search_plain(vector, &filtered_points, top, params, vector_query_context)
})
.collect()
}
fn discovery_search_with_graph(
&self,
discovery_query: DiscoveryQuery<VectorInternal>,
filter: Option<&Filter>,
top: usize,
params: Option<&SearchParams>,
vector_query_context: &VectorQueryContext,
) -> OperationResult<Vec<ScoredPointOffset>> {
// Stage 1: Find best entry points using Context search
let query_vector = QueryVector::Context(discovery_query.pairs.clone().into());
const DISCOVERY_ENTRY_POINT_COUNT: usize = 10;
let custom_entry_points: Vec<_> = self
.search_with_graph(
&query_vector,
filter,
DISCOVERY_ENTRY_POINT_COUNT,
params,
None,
vector_query_context,
)
.map(|search_result| search_result.iter().map(|x| x.idx).collect())?;
// Stage 2: Discovery search with entry points
let query_vector = QueryVector::Discovery(discovery_query);
self.search_with_graph(
&query_vector,
filter,
top,
params,
Some(&custom_entry_points),
vector_query_context,
)
}
fn is_quantized_search(
quantized_storage: Option<&QuantizedVectors>,
params: Option<&SearchParams>,
) -> bool {
let ignore_quantization = params
.and_then(|p| p.quantization)
.map(|q| q.ignore)
.unwrap_or(default_quantization_ignore_value());
quantized_storage.is_some() && !ignore_quantization
}
fn construct_search_scorer<'a>(
vector: &QueryVector,
vector_storage: &'a VectorStorageEnum,
quantized_storage: Option<&'a QuantizedVectors>,
deleted_points: &'a BitSlice,
params: Option<&SearchParams>,
is_stopped: &'a AtomicBool,
) -> OperationResult<Box<dyn RawScorer + 'a>> {
let quantization_enabled = Self::is_quantized_search(quantized_storage, params);
match quantized_storage {
Some(quantized_storage) if quantization_enabled => quantized_storage.raw_scorer(
vector.to_owned(),
deleted_points,
vector_storage.deleted_vector_bitslice(),
is_stopped,
),
_ => new_stoppable_raw_scorer(
vector.to_owned(),
vector_storage,
deleted_points,
is_stopped,
),
}
}
fn get_oversampled_top(
quantized_storage: Option<&QuantizedVectors>,
params: Option<&SearchParams>,
top: usize,
) -> usize {
let quantization_enabled = Self::is_quantized_search(quantized_storage, params);
let oversampling_value = params
.and_then(|p| p.quantization)
.map(|q| q.oversampling)
.unwrap_or(default_quantization_oversampling_value());
match oversampling_value {
Some(oversampling) if quantization_enabled && oversampling > 1.0 => {
(oversampling * top as f64) as usize
}
_ => top,
}
}
fn postprocess_search_result(
&self,
search_result: Vec<ScoredPointOffset>,
vector: &QueryVector,
params: Option<&SearchParams>,
top: usize,
is_stopped: &AtomicBool,
hardware_counter: &HardwareCounterCell,
) -> OperationResult<Vec<ScoredPointOffset>> {
let id_tracker = self.id_tracker.borrow();
let vector_storage = self.vector_storage.borrow();
let quantized_vectors = self.quantized_vectors.borrow();
let quantization_enabled = Self::is_quantized_search(quantized_vectors.as_ref(), params);
let default_rescoring = quantized_vectors
.as_ref()
.map(|q| q.default_rescoring())
.unwrap_or(false);
let rescore = quantization_enabled
&& params
.and_then(|p| p.quantization)
.and_then(|q| q.rescore)
.unwrap_or(default_rescoring);
let mut postprocess_result = if rescore {
let raw_scorer = new_stoppable_raw_scorer(
vector.to_owned(),
&vector_storage,
id_tracker.deleted_point_bitslice(),
is_stopped,
)?;
let mut ids_iterator = search_result.iter().map(|x| x.idx);
let mut re_scored = raw_scorer.score_points_unfiltered(&mut ids_iterator);
hardware_counter.apply_from(raw_scorer.take_hardware_counter());
re_scored.sort_unstable();
re_scored.reverse();
re_scored
} else {
search_result
};
postprocess_result.truncate(top);
Ok(postprocess_result)
}
}
impl HNSWIndex<GraphLinksMmap> {
pub fn prefault_mmap_pages(&self) -> mmap_ops::PrefaultMmapPages {
self.graph.prefault_mmap_pages(&self.path)
}
}
impl<TGraphLinks: GraphLinks> VectorIndex for HNSWIndex<TGraphLinks> {
fn search(
&self,
vectors: &[&QueryVector],
filter: Option<&Filter>,
top: usize,
params: Option<&SearchParams>,
query_context: &VectorQueryContext,
) -> OperationResult<Vec<Vec<ScoredPointOffset>>> {
// If neither `m` nor `payload_m` is set, HNSW doesn't have any links.
// And if so, we need to fall back to plain search (optionally, with quantization).
let is_hnsw_disabled = self.config.m == 0 && self.config.payload_m.unwrap_or(0) == 0;
let exact = params.map(|params| params.exact).unwrap_or(false);
let exact_params = if exact {
params.map(|params| {
let mut params = *params;
params.quantization = Some(QuantizationSearchParams {
ignore: true,
rescore: Some(false),
oversampling: None,
}); // disable quantization for exact search
params
})
} else {
None
};
match filter {
None => {
let vector_storage = self.vector_storage.borrow();
// Determine whether to do a plain or graph search, and pick search timer aggregator
// Because an HNSW graph is built, we'd normally always assume to search the graph.
// But because a lot of points may be deleted in this graph, it may just be faster
// to do a plain search instead.
let plain_search = exact
|| is_hnsw_disabled
|| vector_storage.available_vector_count() < self.config.full_scan_threshold;
// Do plain or graph search
if plain_search {
let _timer = ScopeDurationMeasurer::new(if exact {
&self.searches_telemetry.exact_unfiltered
} else {
&self.searches_telemetry.unfiltered_plain
});
let params_ref = if exact { exact_params.as_ref() } else { params };
vectors
.iter()
.map(|&vector| {
self.search_plain_unfiltered(vector, top, params_ref, query_context)
})
.collect()
} else {
let _timer =
ScopeDurationMeasurer::new(&self.searches_telemetry.unfiltered_hnsw);
self.search_vectors_with_graph(vectors, None, top, params, query_context)
}
}
Some(query_filter) => {
// depending on the amount of filtered-out points the optimal strategy could be
// - to retrieve possible points and score them after
// - to use HNSW index with filtering condition
// if exact search is requested, we should not use HNSW index
if exact || is_hnsw_disabled {
let _timer = ScopeDurationMeasurer::new(if exact {
&self.searches_telemetry.exact_filtered
} else {
&self.searches_telemetry.filtered_plain
});
let params_ref = if exact { exact_params.as_ref() } else { params };
return self.search_vectors_plain(
vectors,
query_filter,
top,
params_ref,
query_context,
);
}
let payload_index = self.payload_index.borrow();
let vector_storage = self.vector_storage.borrow();
let id_tracker = self.id_tracker.borrow();
let available_vector_count = vector_storage.available_vector_count();
let query_point_cardinality = payload_index.estimate_cardinality(query_filter);
let query_cardinality = adjust_to_available_vectors(
query_point_cardinality,
available_vector_count,
id_tracker.available_point_count(),
);
if query_cardinality.max < self.config.full_scan_threshold {
// if cardinality is small - use plain index
let _timer =
ScopeDurationMeasurer::new(&self.searches_telemetry.small_cardinality);
return self.search_vectors_plain(
vectors,
query_filter,
top,
params,
query_context,
);
}
if query_cardinality.min > self.config.full_scan_threshold {
// if cardinality is high enough - use HNSW index
let _timer =
ScopeDurationMeasurer::new(&self.searches_telemetry.large_cardinality);
return self.search_vectors_with_graph(
vectors,
filter,
top,
params,
query_context,
);
}
let filter_context = payload_index.filter_context(query_filter);
// Fast cardinality estimation is not enough, do sample estimation of cardinality
let id_tracker = self.id_tracker.borrow();
if sample_check_cardinality(
id_tracker.sample_ids(Some(vector_storage.deleted_vector_bitslice())),
|idx| filter_context.check(idx),
self.config.full_scan_threshold,
available_vector_count, // Check cardinality among available vectors
) {
// if cardinality is high enough - use HNSW index
let _timer =
ScopeDurationMeasurer::new(&self.searches_telemetry.large_cardinality);
self.search_vectors_with_graph(vectors, filter, top, params, query_context)
} else {
// if cardinality is small - use plain index
let _timer =
ScopeDurationMeasurer::new(&self.searches_telemetry.small_cardinality);
self.search_vectors_plain(vectors, query_filter, top, params, query_context)
}
}
}
}
fn get_telemetry_data(&self, detail: TelemetryDetail) -> VectorIndexSearchesTelemetry {
let tm = &self.searches_telemetry;
VectorIndexSearchesTelemetry {
index_name: None,
unfiltered_plain: tm.unfiltered_plain.lock().get_statistics(detail),
filtered_plain: tm.filtered_plain.lock().get_statistics(detail),
unfiltered_hnsw: tm.unfiltered_hnsw.lock().get_statistics(detail),
filtered_small_cardinality: tm.small_cardinality.lock().get_statistics(detail),
filtered_large_cardinality: tm.large_cardinality.lock().get_statistics(detail),
filtered_exact: tm.exact_filtered.lock().get_statistics(detail),
filtered_sparse: Default::default(),
unfiltered_exact: tm.exact_unfiltered.lock().get_statistics(detail),
unfiltered_sparse: Default::default(),
}
}
fn files(&self) -> Vec<PathBuf> {
[
GraphLayers::<TGraphLinks>::get_path(&self.path),
GraphLayers::<TGraphLinks>::get_links_path(&self.path),
HnswGraphConfig::get_config_path(&self.path),
]
.into_iter()
.filter(|p| p.exists())
.collect()
}
fn indexed_vector_count(&self) -> usize {
self.config
.indexed_vector_count
// If indexed vector count is unknown, fall back to number of points
.unwrap_or_else(|| self.graph.num_points())
}
fn update_vector(
&mut self,
_id: PointOffsetType,
_vector: Option<VectorRef>,
) -> OperationResult<()> {
Err(OperationError::service_error("Cannot update HNSW index"))
}
}
|