Spaces:
Build error
Build error
File size: 8,638 Bytes
84d2a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
const FLOAT_NAN: u8 = 0x00;
const FLOAT_NEG: u8 = 0x01;
const FLOAT_ZERO: u8 = 0x02;
const FLOAT_POS: u8 = 0x03;
const F64_KEY_LEN: usize = 13;
const I64_KEY_LEN: usize = 12;
const U128_KEY_LEN: usize = 20;
/// Encode a f64 into `buf`
///
/// The encoded format for a f64 is :
///
/// **for positives:** the f64 bits ( in IEEE 754 format ) are re-interpreted as an int64 and
/// encoded using big-endian order.
///
/// **for negative** f64 : invert all the bits and encode it using bit-endian order.
///
/// A single-byte prefix tag is appended to the front of the encoding slice to ensures that
/// NaNs are always sorted first.
///
/// This approach was inspired by <https://github.com/cockroachdb/cockroach/blob/master/pkg/util/encoding/float.go>
///
///
/// #f64 encoding format
///
///```text
/// 0 1 9
/// βββββββββββββββββββββ¬ββββββββββββββββββ
/// β Float Type β NEG: !key_val β
/// β NAN/NEG/ZERO/POS | POS: key_val β
/// β (big-endian) β (big-endian) β
/// βββββββββββββββββββββ΄ββββββββββββββββββ
/// ```
///
pub fn encode_f64_ascending(val: f64, buf: &mut Vec<u8>) {
if val.is_nan() {
buf.push(FLOAT_NAN);
buf.extend([0_u8; std::mem::size_of::<f64>()]);
return;
}
if val == 0f64 {
buf.push(FLOAT_ZERO);
buf.extend([0_u8; std::mem::size_of::<f64>()]);
return;
}
let f_as_u64 = val.to_bits();
if f_as_u64 & (1 << 63) != 0 {
let f = !f_as_u64;
buf.push(FLOAT_NEG);
buf.extend(f.to_be_bytes());
} else {
buf.push(FLOAT_POS);
buf.extend(f_as_u64.to_be_bytes());
}
}
/// Decode a f64 from a slice.
pub fn decode_f64_ascending(buf: &[u8]) -> f64 {
match buf[0] {
FLOAT_NAN => f64::NAN,
FLOAT_NEG => {
let u = u64::from_be_bytes(buf[1..9].try_into().expect("cannot decode f64"));
let f = !u;
f64::from_bits(f)
}
FLOAT_ZERO => 0f64,
FLOAT_POS => {
let u = u64::from_be_bytes(buf[1..9].try_into().expect("cannot decode f64"));
f64::from_bits(u)
}
_ => panic!("invalid f64 prefix"),
}
}
/// Encode a i64 into `buf` so that is sorts ascending.
pub fn encode_i64_ascending(val: i64, buf: &mut Vec<u8>) {
let i = val ^ i64::MIN;
buf.extend(i.to_be_bytes());
}
/// Decode a i64 from a slice
pub fn decode_i64_ascending(buf: &[u8]) -> i64 {
let i = i64::from_be_bytes(buf[0..8].try_into().expect("cannot decode i64"));
i ^ i64::MIN
}
/// Encodes a f64 key so that it sort in ascending order.
///
/// The key is compound by the numeric value of the key plus a u32 representing
/// the payload offset within the payload store.
///
/// # float key encoding format
///
///```text
///
/// 0 1 9 13
/// βββββββββββββββββββββ¬ββββββββββββββββββ¬βββββββββββββββ
/// β Float Type β NEG: !key_val β β
/// β NAN/NEG/ZERO/POS | POS: key_val β point_offset β
/// β (big-endian) β (big-endian) β β
/// βββββββββββββββββββββ΄ββββββββββββββββββ΄βββββββββββββββ
/// ```
///
pub fn encode_f64_key_ascending(key_val: f64, point_offset: u32) -> Vec<u8> {
let mut buf = Vec::with_capacity(F64_KEY_LEN);
encode_f64_ascending(key_val, &mut buf);
buf.extend(point_offset.to_be_bytes());
buf
}
pub fn decode_f64_key_ascending(buf: &[u8]) -> (u32, f64) {
(
u32::from_be_bytes(
(&buf[F64_KEY_LEN - std::mem::size_of::<u32>()..])
.try_into()
.unwrap(),
),
decode_f64_ascending(buf),
)
}
/// Encodes a i64 key so that it sort in ascending order.
///
/// The key is compound by the numeric value of the key plus a u32 representing
/// the payload offset within the payload store.
///
/// # int key encoding format
///
///```text
///
/// 0 8 12
/// ββββββββββββββββββββββ¬βββββββββββββββ
/// β key_val ^ i64::MIN β point_offset β
/// β (big-endian) β (big-endian) β
/// ββββββββββββββββββββββ΄βββββββββββββββ
///```
pub fn encode_i64_key_ascending(key_val: i64, point_offset: u32) -> Vec<u8> {
let mut buf = Vec::with_capacity(I64_KEY_LEN);
encode_i64_ascending(key_val, &mut buf);
buf.extend(point_offset.to_be_bytes());
buf
}
pub fn decode_i64_key_ascending(buf: &[u8]) -> (u32, i64) {
(
u32::from_be_bytes(
(&buf[I64_KEY_LEN - std::mem::size_of::<u32>()..])
.try_into()
.unwrap(),
),
decode_i64_ascending(buf),
)
}
/// Encodes a u128 key so that it sort in ascending order.
///
/// The key is compound by the numeric value of the key plus a u32 representing
/// the payload offset within the payload store.
///
/// # int key encoding format
///
///```text
///
/// 0 16 20
/// βββββββββββββββββββββββ¬βββββββββββββββ
/// β key_val β point_offset β
/// β (big-endian) β (big-endian) β
/// βββββββββββββββββββββββ΄βββββββββββββββ
///```
pub fn encode_u128_key_ascending(key_val: u128, point_offset: u32) -> Vec<u8> {
let mut buf = Vec::with_capacity(U128_KEY_LEN);
buf.extend(key_val.to_be_bytes());
buf.extend(point_offset.to_be_bytes());
buf
}
pub fn decode_u128_key_ascending(buf: &[u8]) -> (u32, u128) {
(
u32::from_be_bytes(
(&buf[U128_KEY_LEN - std::mem::size_of::<u32>()..])
.try_into()
.unwrap(),
),
u128::from_be_bytes(buf[0..16].try_into().expect("cannot decode u128")),
)
}
#[cfg(test)]
mod tests {
use std::cmp::Ordering;
use crate::index::key_encoding::{
decode_f64_ascending, decode_i64_ascending, encode_f64_ascending, encode_i64_ascending,
};
#[test]
fn test_encode_f64() {
test_f64_encoding_roundtrip(0.42342);
test_f64_encoding_roundtrip(0f64);
test_f64_encoding_roundtrip(f64::NAN);
test_f64_encoding_roundtrip(-0.423423983);
}
#[test]
fn test_encode_i64() {
test_i64_encoding_roundtrip(i64::MIN);
test_i64_encoding_roundtrip(i64::MAX);
test_i64_encoding_roundtrip(0);
test_i64_encoding_roundtrip(41262);
test_i64_encoding_roundtrip(-98793);
}
#[test]
fn test_f64_lex_order() {
let mut nan_buf = Vec::new();
let mut zero_buf = Vec::new();
let mut pos_buf = Vec::new();
let mut neg_buf = Vec::new();
encode_f64_ascending(f64::NAN, &mut nan_buf);
encode_f64_ascending(0f64, &mut zero_buf);
encode_f64_ascending(0.2435224412, &mut pos_buf);
encode_f64_ascending(-0.82976347, &mut neg_buf);
assert_eq!(nan_buf.cmp(&neg_buf), Ordering::Less);
assert_eq!(neg_buf.cmp(&zero_buf), Ordering::Less);
assert_eq!(zero_buf.cmp(&pos_buf), Ordering::Less);
}
#[test]
fn test_i64_lex_order() {
let mut zero_buf = Vec::new();
let mut pos_buf = Vec::new();
let mut neg_buf = Vec::new();
encode_i64_ascending(0, &mut zero_buf);
encode_i64_ascending(123, &mut pos_buf);
encode_i64_ascending(-4324, &mut neg_buf);
assert_eq!(neg_buf.cmp(&zero_buf), Ordering::Less);
assert_eq!(zero_buf.cmp(&pos_buf), Ordering::Less);
}
fn test_f64_encoding_roundtrip(val: f64) {
let mut buf = Vec::new();
encode_f64_ascending(val, &mut buf);
let dec_val = decode_f64_ascending(buf.as_slice());
if val.is_nan() {
assert!(dec_val.is_nan());
return;
}
assert_eq!(val, dec_val);
}
fn test_i64_encoding_roundtrip(val: i64) {
let mut buf = Vec::new();
encode_i64_ascending(val, &mut buf);
let res = decode_i64_ascending(buf.as_slice());
assert_eq!(val, res);
}
}
|