Spaces:
Build error
Build error
File size: 9,162 Bytes
84d2a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
use std::collections::HashMap;
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
use common::cpu::CpuPermit;
use common::types::TelemetryDetail;
use itertools::Itertools;
use rand::prelude::StdRng;
use rand::{Rng, SeedableRng};
use rstest::rstest;
use segment::data_types::vectors::{only_default_multi_vector, QueryVector, DEFAULT_VECTOR_NAME};
use segment::entry::entry_point::SegmentEntry;
use segment::fixtures::payload_fixtures::{random_int_payload, random_multi_vector};
use segment::index::hnsw_index::graph_links::GraphLinksRam;
use segment::index::hnsw_index::hnsw::{HNSWIndex, HnswIndexOpenArgs};
use segment::index::hnsw_index::num_rayon_threads;
use segment::index::{PayloadIndex, VectorIndex};
use segment::segment_constructor::build_segment;
use segment::types::{
Condition, Distance, FieldCondition, Filter, HnswConfig, Indexes, MultiVectorConfig, Payload,
PayloadSchemaType, Range, SearchParams, SegmentConfig, SeqNumberType, VectorDataConfig,
VectorStorageType,
};
use segment::vector_storage::query::{ContextPair, DiscoveryQuery, RecoQuery};
use segment::vector_storage::VectorStorage;
use serde_json::json;
use tempfile::Builder;
const MAX_EXAMPLE_PAIRS: usize = 4;
enum QueryVariant {
Nearest,
RecommendBestScore,
Discovery,
}
fn random_multi_vec_discovery_query<R: Rng + ?Sized>(
rnd: &mut R,
dim: usize,
num_vector_per_points: usize,
) -> QueryVector {
let num_pairs: usize = rnd.gen_range(1..MAX_EXAMPLE_PAIRS);
let target = random_multi_vector(rnd, dim, num_vector_per_points).into();
let pairs = (0..num_pairs)
.map(|_| {
let positive = random_multi_vector(rnd, dim, num_vector_per_points).into();
let negative = random_multi_vector(rnd, dim, num_vector_per_points).into();
ContextPair { positive, negative }
})
.collect_vec();
DiscoveryQuery::new(target, pairs).into()
}
fn random_multi_vec_reco_query<R: Rng + ?Sized>(
rnd: &mut R,
dim: usize,
num_vector_per_points: usize,
) -> QueryVector {
let num_examples: usize = rnd.gen_range(1..MAX_EXAMPLE_PAIRS);
let positive = (0..num_examples)
.map(|_| random_multi_vector(rnd, dim, num_vector_per_points).into())
.collect_vec();
let negative = (0..num_examples)
.map(|_| random_multi_vector(rnd, dim, num_vector_per_points).into())
.collect_vec();
RecoQuery::new(positive, negative).into()
}
fn random_multi_vec_query<R: Rng + ?Sized>(
variant: &QueryVariant,
rnd: &mut R,
dim: usize,
num_vector_per_points: usize,
) -> QueryVector {
match variant {
QueryVariant::Nearest => random_multi_vector(rnd, dim, num_vector_per_points).into(),
QueryVariant::Discovery => {
random_multi_vec_discovery_query(rnd, dim, num_vector_per_points)
}
QueryVariant::RecommendBestScore => {
random_multi_vec_reco_query(rnd, dim, num_vector_per_points)
}
}
}
/// Check all cases with single vector per multi and several vectors per multi
#[rstest]
#[case::nearest_eq(QueryVariant::Nearest, 1, 32, 5)]
#[case::nearest_multi(QueryVariant::Nearest, 3, 64, 20)]
#[case::discovery_eq(QueryVariant::Discovery, 1, 128, 5)]
#[case::discovery_multi(QueryVariant::Discovery, 3, 128, 20)]
#[case::recommend_eq(QueryVariant::RecommendBestScore, 1, 64, 5)]
#[case::recommend_multi(QueryVariant::RecommendBestScore, 2, 64, 10)]
fn test_multi_filterable_hnsw(
#[case] query_variant: QueryVariant,
#[case] max_num_vector_per_points: usize,
#[case] ef: usize,
#[case] max_failures: usize, // out of 100
) {
use segment::json_path::JsonPath;
let stopped = AtomicBool::new(false);
let vector_dim = 8;
let m = 8;
let num_points: u64 = 5_000;
let ef_construct = 16;
let distance = Distance::Cosine;
let full_scan_threshold = 8; // KB
let num_payload_values = 2;
let mut rnd = StdRng::seed_from_u64(42);
let dir = Builder::new().prefix("segment_dir").tempdir().unwrap();
let hnsw_dir = Builder::new().prefix("hnsw_dir").tempdir().unwrap();
let config = SegmentConfig {
vector_data: HashMap::from([(
DEFAULT_VECTOR_NAME.to_owned(),
VectorDataConfig {
size: vector_dim,
distance,
storage_type: VectorStorageType::Memory,
index: Indexes::Plain {}, // uses plain index for comparison
quantization_config: None,
multivector_config: Some(MultiVectorConfig::default()), // uses multivec config
datatype: None,
},
)]),
sparse_vector_data: Default::default(),
payload_storage_type: Default::default(),
};
let int_key = "int";
let mut segment = build_segment(dir.path(), &config, true).unwrap();
for n in 0..num_points {
let idx = n.into();
// Random number of vectors per multivec point
let num_vector_for_point = rnd.gen_range(1..=max_num_vector_per_points);
let multi_vec = random_multi_vector(&mut rnd, vector_dim, num_vector_for_point);
let int_payload = random_int_payload(&mut rnd, num_payload_values..=num_payload_values);
let payload: Payload = json!({int_key:int_payload,}).into();
let named_vectors = only_default_multi_vector(&multi_vec);
segment
.upsert_point(n as SeqNumberType, idx, named_vectors)
.unwrap();
segment
.set_full_payload(n as SeqNumberType, idx, &payload)
.unwrap();
}
assert_eq!(
segment.vector_data[DEFAULT_VECTOR_NAME]
.vector_storage
.borrow()
.total_vector_count(),
num_points as usize
);
let payload_index_ptr = segment.payload_index.clone();
payload_index_ptr
.borrow_mut()
.set_indexed(&JsonPath::new(int_key), PayloadSchemaType::Integer)
.unwrap();
let hnsw_config = HnswConfig {
m,
ef_construct,
full_scan_threshold,
max_indexing_threads: 2,
on_disk: Some(false),
payload_m: None,
};
let permit_cpu_count = num_rayon_threads(hnsw_config.max_indexing_threads);
let permit = Arc::new(CpuPermit::dummy(permit_cpu_count as u32));
let vector_storage = &segment.vector_data[DEFAULT_VECTOR_NAME].vector_storage;
let quantized_vectors = &segment.vector_data[DEFAULT_VECTOR_NAME].quantized_vectors;
let hnsw_index = HNSWIndex::<GraphLinksRam>::open(HnswIndexOpenArgs {
path: hnsw_dir.path(),
id_tracker: segment.id_tracker.clone(),
vector_storage: vector_storage.clone(),
quantized_vectors: quantized_vectors.clone(),
payload_index: payload_index_ptr,
hnsw_config,
permit: Some(permit),
stopped: &stopped,
})
.unwrap();
let top = 3;
let mut hits = 0;
let attempts = 100;
for i in 0..attempts {
// Random number of vectors per multivec query
let num_vector_for_query = rnd.gen_range(1..=max_num_vector_per_points);
let query =
random_multi_vec_query(&query_variant, &mut rnd, vector_dim, num_vector_for_query);
let range_size = 40;
let left_range = rnd.gen_range(0..400);
let right_range = left_range + range_size;
let filter = Filter::new_must(Condition::Field(FieldCondition::new_range(
JsonPath::new(int_key),
Range {
lt: None,
gt: None,
gte: Some(f64::from(left_range)),
lte: Some(f64::from(right_range)),
},
)));
let filter_query = Some(&filter);
let index_result = hnsw_index
.search(
&[&query],
filter_query,
top,
Some(&SearchParams {
hnsw_ef: Some(ef),
..Default::default()
}),
&Default::default(),
)
.unwrap();
// check that search was performed using HNSW index
assert_eq!(
hnsw_index
.get_telemetry_data(TelemetryDetail::default())
.filtered_large_cardinality
.count,
i + 1
);
// segment uses a plain index by configuration
let plain_result = segment.vector_data[DEFAULT_VECTOR_NAME]
.vector_index
.borrow()
.search(&[&query], filter_query, top, None, &Default::default())
.unwrap();
if plain_result == index_result {
hits += 1;
} else {
eprintln!("Attempt {i}/{attempts}");
eprintln!("Different results for query {query:?}");
eprintln!("plain_result = {plain_result:#?}");
eprintln!("index_result = {index_result:#?}");
}
}
assert!(
attempts - hits <= max_failures,
"hits: {hits}/{attempts} (expected less than {max_failures} failures)"
); // Not more than X% failures
eprintln!("hits = {hits:#?} out of {attempts}");
}
|