Spaces:
Build error
Build error
File size: 12,117 Bytes
84d2a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
use std::collections::{HashMap, HashSet};
use std::sync::atomic::AtomicBool;
use common::types::TelemetryDetail;
use itertools::Itertools;
use rand::prelude::StdRng;
use rand::{Rng, SeedableRng};
use segment::data_types::named_vectors::NamedVectors;
use segment::data_types::query_context::{QueryContext, VectorQueryContext};
use segment::data_types::vectors::{QueryVector, VectorElementType, VectorInternal};
use segment::entry::entry_point::SegmentEntry;
use segment::fixtures::payload_fixtures::random_vector;
use segment::index::sparse_index::sparse_index_config::{SparseIndexConfig, SparseIndexType};
use segment::index::sparse_index::sparse_vector_index::SparseVectorIndexOpenArgs;
use segment::index::VectorIndex;
use segment::segment_constructor::{build_segment, create_sparse_vector_index_test};
use segment::types::{
Condition, Distance, ExtendedPointId, Filter, HasIdCondition, Indexes, PointIdType,
SegmentConfig, SeqNumberType, SparseVectorDataConfig, VectorDataConfig, VectorStorageDatatype,
VectorStorageType, DEFAULT_SPARSE_FULL_SCAN_THRESHOLD,
};
use segment::vector_storage::query::{ContextPair, DiscoveryQuery};
use sparse::common::sparse_vector::SparseVector;
use tempfile::Builder;
const MAX_EXAMPLE_PAIRS: usize = 3;
const SPARSE_VECTOR_NAME: &str = "sparse_test";
fn convert_to_sparse_vector(vector: &[VectorElementType]) -> SparseVector {
let mut sparse_vector = SparseVector::default();
for (idx, value) in vector.iter().enumerate() {
sparse_vector.indices.push(idx as u32);
sparse_vector.values.push(*value);
}
sparse_vector
}
fn random_named_vector<R: Rng + ?Sized>(rnd: &mut R, dim: usize) -> (NamedVectors, NamedVectors) {
let dense_vector = random_vector(rnd, dim);
let sparse_vector = convert_to_sparse_vector(&dense_vector);
let mut sparse_result = NamedVectors::default();
sparse_result.insert(SPARSE_VECTOR_NAME.to_owned(), sparse_vector.into());
let mut dense_result = NamedVectors::default();
dense_result.insert(SPARSE_VECTOR_NAME.to_owned(), dense_vector.into());
(sparse_result, dense_result)
}
fn random_discovery_query<R: Rng + ?Sized>(rnd: &mut R, dim: usize) -> (QueryVector, QueryVector) {
let num_pairs: usize = rnd.gen_range(1..MAX_EXAMPLE_PAIRS);
let dense_target = random_vector(rnd, dim);
let sparse_target = convert_to_sparse_vector(&dense_target);
let dense_pairs = (0..num_pairs)
.map(|_| {
let positive = random_vector(rnd, dim);
let negative = random_vector(rnd, dim);
(positive, negative)
})
.collect_vec();
let sparse_pairs = (0..num_pairs)
.map(|i| {
let positive = convert_to_sparse_vector(&dense_pairs[i].0);
let negative = convert_to_sparse_vector(&dense_pairs[i].1);
(positive, negative)
})
.collect_vec();
let dense_query = DiscoveryQuery::new(
dense_target.into(),
dense_pairs
.into_iter()
.map(|(positive, negative)| ContextPair {
positive: positive.into(),
negative: negative.into(),
})
.collect(),
)
.into();
let sparse_query = DiscoveryQuery::new(
sparse_target.into(),
sparse_pairs
.into_iter()
.map(|(positive, negative)| ContextPair {
positive: positive.into(),
negative: negative.into(),
})
.collect(),
)
.into();
(sparse_query, dense_query)
}
fn random_nearest_query<R: Rng + ?Sized>(rnd: &mut R, dim: usize) -> (QueryVector, QueryVector) {
let dense_target = random_vector(rnd, dim);
let sparse_target = convert_to_sparse_vector(&dense_target);
(sparse_target.into(), dense_target.into())
}
#[test]
fn sparse_index_discover_test() {
let stopped = AtomicBool::new(false);
let dim = 8;
let num_vectors: u64 = 5_000;
let distance = Distance::Dot;
let mut rnd = StdRng::seed_from_u64(42);
let dir = Builder::new().prefix("segment_dir").tempdir().unwrap();
let index_dir = Builder::new().prefix("hnsw_dir").tempdir().unwrap();
let sparse_config = SegmentConfig {
vector_data: Default::default(),
sparse_vector_data: HashMap::from([(
SPARSE_VECTOR_NAME.to_owned(),
SparseVectorDataConfig {
index: SparseIndexConfig {
full_scan_threshold: Some(DEFAULT_SPARSE_FULL_SCAN_THRESHOLD),
index_type: SparseIndexType::MutableRam,
datatype: Some(VectorStorageDatatype::Float32),
},
},
)]),
payload_storage_type: Default::default(),
};
let dense_config = SegmentConfig {
vector_data: HashMap::from([(
SPARSE_VECTOR_NAME.to_owned(),
VectorDataConfig {
size: dim,
distance,
storage_type: VectorStorageType::Memory,
index: Indexes::Plain {},
quantization_config: None,
multivector_config: None,
datatype: None,
},
)]),
payload_storage_type: Default::default(),
sparse_vector_data: Default::default(),
};
let mut sparse_segment = build_segment(dir.path(), &sparse_config, true).unwrap();
let mut dense_segment = build_segment(dir.path(), &dense_config, true).unwrap();
for n in 0..num_vectors {
let (sparse_vector, dense_vector) = random_named_vector(&mut rnd, dim);
let idx = n.into();
sparse_segment
.upsert_point(n as SeqNumberType, idx, sparse_vector)
.unwrap();
dense_segment
.upsert_point(n as SeqNumberType, idx, dense_vector)
.unwrap();
}
let payload_index_ptr = sparse_segment.payload_index.clone();
let vector_storage = &sparse_segment.vector_data[SPARSE_VECTOR_NAME].vector_storage;
let sparse_index = create_sparse_vector_index_test(SparseVectorIndexOpenArgs {
config: SparseIndexConfig {
full_scan_threshold: Some(DEFAULT_SPARSE_FULL_SCAN_THRESHOLD),
index_type: SparseIndexType::ImmutableRam,
datatype: Some(VectorStorageDatatype::Float32),
},
id_tracker: sparse_segment.id_tracker.clone(),
vector_storage: vector_storage.clone(),
payload_index: payload_index_ptr,
path: index_dir.path(),
stopped: &stopped,
tick_progress: || (),
})
.unwrap();
let top = 3;
let attempts = 100;
for i in 0..attempts {
// do discovery search
let (sparse_query, dense_query) = random_discovery_query(&mut rnd, dim);
let vec_context = VectorQueryContext::default();
let sparse_discovery_result = sparse_index
.search(&[&sparse_query], None, top, None, &vec_context)
.unwrap();
let dense_discovery_result = dense_segment.vector_data[SPARSE_VECTOR_NAME]
.vector_index
.borrow()
.search(&[&dense_query], None, top, None, &vec_context)
.unwrap();
// check id only because scores can be epsilon-size different
assert_eq!(
sparse_discovery_result[0]
.iter()
.map(|r| r.idx)
.collect_vec(),
dense_discovery_result[0]
.iter()
.map(|r| r.idx)
.collect_vec(),
);
// do regular nearest search
let (sparse_query, dense_query) = random_nearest_query(&mut rnd, dim);
let query_context = QueryContext::default();
let segment_query_context = query_context.get_segment_query_context();
let vector_context = segment_query_context.get_vector_context(SPARSE_VECTOR_NAME);
let sparse_search_result = sparse_index
.search(&[&sparse_query], None, top, None, &vector_context)
.unwrap();
assert!(
vector_context
.hardware_counter()
.unwrap()
.cpu_counter()
.get()
> 0
);
let dense_search_result = dense_segment.vector_data[SPARSE_VECTOR_NAME]
.vector_index
.borrow()
.search(&[&dense_query], None, top, None, &vector_context)
.unwrap();
segment_query_context
.take_hardware_counter()
.discard_results();
// check that nearest search uses sparse index
let telemetry = sparse_index.get_telemetry_data(TelemetryDetail::default());
assert_eq!(telemetry.unfiltered_sparse.count, i + 1);
// check id only because scores can be epsilon-size different
assert_eq!(
sparse_search_result[0].iter().map(|r| r.idx).collect_vec(),
dense_search_result[0].iter().map(|r| r.idx).collect_vec(),
);
}
}
#[test]
fn sparse_index_hardware_measurement_test() {
let stopped = AtomicBool::new(false);
let dim = 8;
let num_vectors: u64 = 5_000;
let mut rnd = StdRng::seed_from_u64(42);
let dir = Builder::new().prefix("segment_dir").tempdir().unwrap();
let index_dir = Builder::new().prefix("hnsw_dir").tempdir().unwrap();
let sparse_config = SegmentConfig {
vector_data: Default::default(),
sparse_vector_data: HashMap::from([(
SPARSE_VECTOR_NAME.to_owned(),
SparseVectorDataConfig {
index: SparseIndexConfig {
full_scan_threshold: Some(DEFAULT_SPARSE_FULL_SCAN_THRESHOLD),
index_type: SparseIndexType::MutableRam,
datatype: Some(VectorStorageDatatype::Float32),
},
},
)]),
payload_storage_type: Default::default(),
};
let mut sparse_segment = build_segment(dir.path(), &sparse_config, true).unwrap();
for n in 0..num_vectors {
let (sparse_vector, _) = random_named_vector(&mut rnd, dim);
let idx = n.into();
sparse_segment
.upsert_point(n as SeqNumberType, idx, sparse_vector)
.unwrap();
}
let payload_index_ptr = sparse_segment.payload_index.clone();
let vector_storage = &sparse_segment.vector_data[SPARSE_VECTOR_NAME].vector_storage;
let sparse_index = create_sparse_vector_index_test(SparseVectorIndexOpenArgs {
config: SparseIndexConfig {
full_scan_threshold: Some(DEFAULT_SPARSE_FULL_SCAN_THRESHOLD),
index_type: SparseIndexType::ImmutableRam,
datatype: Some(VectorStorageDatatype::Float32),
},
id_tracker: sparse_segment.id_tracker.clone(),
vector_storage: vector_storage.clone(),
payload_index: payload_index_ptr,
path: index_dir.path(),
stopped: &stopped,
tick_progress: || (),
})
.unwrap();
let query_vec = QueryVector::Nearest(VectorInternal::Sparse(
SparseVector::new(vec![0, 1, 2], vec![42.0, 42.42, 42.4242]).unwrap(),
));
let query_context = QueryContext::default();
let segment_query_context = query_context.get_segment_query_context();
let vector_context = segment_query_context.get_vector_context(SPARSE_VECTOR_NAME);
assert!(vector_context.hardware_counter().is_some());
assert_eq!(
vector_context
.hardware_counter()
.unwrap()
.cpu_counter()
.get(),
0
);
// Some filter so we do plain sparse search
let ids: HashSet<PointIdType> = (0..3).map(ExtendedPointId::NumId).collect();
let filter = Filter::new_must(Condition::HasId(HasIdCondition::from(ids)));
sparse_index
.search(&[&query_vec], Some(&filter), 1, None, &vector_context)
.unwrap();
assert!(
vector_context
.hardware_counter()
.unwrap()
.cpu_counter()
.get()
> 0
);
segment_query_context
.take_hardware_counter()
.discard_results();
}
|