Spaces:
Build error
Build error
File size: 8,109 Bytes
84d2a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
use std::borrow::Cow;
use std::io;
use std::path::Path;
use std::sync::atomic::AtomicBool;
use common::types::PointOffsetType;
use criterion::measurement::Measurement;
use criterion::{criterion_group, criterion_main, Criterion};
use dataset::Dataset;
use indicatif::{ProgressBar, ProgressDrawTarget};
use itertools::Itertools;
use rand::rngs::StdRng;
use rand::SeedableRng as _;
use sparse::common::scores_memory_pool::ScoresMemoryPool;
use sparse::common::sparse_vector::{RemappedSparseVector, SparseVector};
use sparse::common::sparse_vector_fixture::{random_positive_sparse_vector, random_sparse_vector};
use sparse::common::types::QuantizedU8;
use sparse::index::inverted_index::inverted_index_compressed_immutable_ram::InvertedIndexCompressedImmutableRam;
use sparse::index::inverted_index::inverted_index_compressed_mmap::InvertedIndexCompressedMmap;
use sparse::index::inverted_index::inverted_index_mmap::InvertedIndexMmap;
use sparse::index::inverted_index::inverted_index_ram::InvertedIndexRam;
use sparse::index::inverted_index::inverted_index_ram_builder::InvertedIndexBuilder;
use sparse::index::inverted_index::InvertedIndex;
use sparse::index::loaders::{self, Csr};
use sparse::index::search_context::SearchContext;
mod prof;
const NUM_QUERIES: usize = 2048;
const MAX_SPARSE_DIM: usize = 30_000;
const TOP: usize = 10;
pub fn bench_search(c: &mut Criterion) {
bench_uniform_random(c, "random-50k", 50_000);
bench_uniform_random(c, "random-500k", 500_000);
{
let query_vectors =
loaders::load_csr_vecs(Dataset::NeurIps2023Queries.download().unwrap()).unwrap();
let index_1m = load_csr_index(Dataset::NeurIps2023_1M.download().unwrap(), 1.0).unwrap();
run_bench(c, "neurips2023-1M", index_1m, &query_vectors);
let index_full =
load_csr_index(Dataset::NeurIps2023Full.download().unwrap(), 0.25).unwrap();
run_bench(c, "neurips2023-full-25pct", index_full, &query_vectors);
}
bench_movies(c);
}
fn bench_uniform_random(c: &mut Criterion, name: &str, num_vectors: usize) {
let mut rnd = StdRng::seed_from_u64(42);
let index = InvertedIndexBuilder::build_from_iterator((0..num_vectors).map(|idx| {
(
idx as PointOffsetType,
random_sparse_vector(&mut rnd, MAX_SPARSE_DIM).into_remapped(),
)
}));
let query_vectors = (0..NUM_QUERIES)
.map(|_| random_positive_sparse_vector(&mut rnd, MAX_SPARSE_DIM))
.collect::<Vec<_>>();
run_bench(c, name, index, &query_vectors);
}
pub fn bench_movies(c: &mut Criterion) {
let mut iter =
loaders::JsonReader::open(Dataset::SpladeWikiMovies.download().unwrap()).unwrap();
// Use the first NUM_QUERIES vectors as queries, and the rest as index.
let query_vectors = (0..NUM_QUERIES)
.map(|_| iter.next().unwrap().unwrap())
.collect_vec();
let index = InvertedIndexBuilder::build_from_iterator(
iter.enumerate()
.map(|(idx, vec)| (idx as PointOffsetType, vec.unwrap().into_remapped())),
);
run_bench(c, "movies", index, &query_vectors);
}
pub fn run_bench(
c: &mut Criterion,
name: &str,
index: InvertedIndexRam,
query_vectors: &[SparseVector],
) {
let hottest_id = index
.postings
.iter()
.enumerate()
.map(|(i, p)| (i, p.elements.len()))
.max_by_key(|(_, len)| *len)
.unwrap()
.0 as u32;
let average_elements = index
.postings
.iter()
.map(|p| p.elements.len())
.sum::<usize>() as f64
/ index.postings.len() as f64;
eprintln!(
"Hottest id: {hottest_id} (elements: {}), average elements: {average_elements}",
index.postings[hottest_id as usize].elements.len(),
);
let hottest_query_vectors = query_vectors
.iter()
.cloned()
.map(|mut vec| {
vec.indices.truncate(4);
vec.values.truncate(4);
if let Err(idx) = vec.indices.binary_search(&hottest_id) {
if idx < vec.indices.len() {
vec.indices[idx] = hottest_id;
vec.values[idx] = 1.0;
} else {
vec.indices.push(hottest_id);
vec.values.push(1.0);
}
}
vec.into_remapped()
})
.collect::<Vec<_>>();
run_bench2(
c.benchmark_group(format!("search/ram/{name}")),
&index,
query_vectors,
&hottest_query_vectors,
);
run_bench2(
c.benchmark_group(format!("search/mmap/{name}")),
&InvertedIndexMmap::from_ram_index(
Cow::Borrowed(&index),
tempfile::Builder::new()
.prefix("test_index_dir")
.tempdir()
.unwrap()
.path(),
)
.unwrap(),
query_vectors,
&hottest_query_vectors,
);
macro_rules! run_bench2 {
($name:literal, $type:ty) => {
run_bench2(
c.benchmark_group(format!("search/ram_{}/{name}", $name)),
&InvertedIndexCompressedImmutableRam::<$type>::from_ram_index(
Cow::Borrowed(&index),
"nonexistent/path",
)
.unwrap(),
query_vectors,
&hottest_query_vectors,
);
run_bench2(
c.benchmark_group(format!("search/mmap_{}/{name}", $name)),
&InvertedIndexCompressedMmap::<$type>::from_ram_index(
Cow::Borrowed(&index),
tempfile::Builder::new()
.prefix("test_index_dir")
.tempdir()
.unwrap()
.path(),
)
.unwrap(),
query_vectors,
&hottest_query_vectors,
);
};
}
run_bench2!("c32", f32);
run_bench2!("c16", half::f16);
// run_bench2!("c8", u8);
run_bench2!("q8", QuantizedU8);
}
fn run_bench2(
mut group: criterion::BenchmarkGroup<'_, impl Measurement>,
index: &impl InvertedIndex,
query_vectors: &[SparseVector],
hottest_query_vectors: &[RemappedSparseVector],
) {
let pool = ScoresMemoryPool::new();
let stopped = AtomicBool::new(false);
let mut it = query_vectors.iter().cycle();
group.bench_function("basic", |b| {
b.iter_batched(
|| it.next().unwrap().clone().into_remapped(),
|vec| SearchContext::new(vec, TOP, index, pool.get(), &stopped).search(&|_| true),
criterion::BatchSize::SmallInput,
)
});
let mut it = hottest_query_vectors.iter().cycle();
group.bench_function("hottest", |b| {
b.iter_batched(
|| it.next().unwrap().clone(),
|vec| SearchContext::new(vec, TOP, index, pool.get(), &stopped).search(&|_| true),
criterion::BatchSize::SmallInput,
)
});
}
fn load_csr_index(path: impl AsRef<Path>, ratio: f32) -> io::Result<InvertedIndexRam> {
let csr = Csr::open(path.as_ref())?;
let mut builder = InvertedIndexBuilder::new();
assert!(ratio > 0.0 && ratio <= 1.0);
let count = (csr.len() as f32 * ratio) as usize;
let bar =
ProgressBar::with_draw_target(Some(count as u64), ProgressDrawTarget::stderr_with_hz(12));
for (row, vec) in bar.wrap_iter(csr.iter().take(count).enumerate()) {
builder.add(
row as u32,
vec.map(|v| v.into_remapped())
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?,
);
}
bar.finish_and_clear();
Ok(builder.build())
}
#[cfg(not(target_os = "windows"))]
criterion_group! {
name = benches;
config = Criterion::default().with_profiler(prof::FlamegraphProfiler::new(100));
targets = bench_search,
}
#[cfg(target_os = "windows")]
criterion_group! {
name = benches;
config = Criterion::default();
targets = bench_search,
}
criterion_main!(benches);
|