Spaces:
Build error
Build error
File size: 38,495 Bytes
84d2a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 |
use std::cmp::{max, min, Ordering};
use std::sync::atomic::AtomicBool;
use std::sync::atomic::Ordering::Relaxed;
use common::counter::hardware_counter::HardwareCounterCell;
use common::top_k::TopK;
use common::types::{PointOffsetType, ScoredPointOffset};
use super::posting_list_common::PostingListIter;
use crate::common::scores_memory_pool::PooledScoresHandle;
use crate::common::sparse_vector::RemappedSparseVector;
use crate::common::types::{DimId, DimWeight};
use crate::index::inverted_index::InvertedIndex;
use crate::index::posting_list::PostingListIterator;
/// Iterator over posting lists with a reference to the corresponding query index and weight
pub struct IndexedPostingListIterator<T: PostingListIter> {
posting_list_iterator: T,
query_index: DimId,
query_weight: DimWeight,
}
/// Making this larger makes the search faster but uses more (pooled) memory
const ADVANCE_BATCH_SIZE: usize = 10_000;
pub struct SearchContext<'a, 'b, T: PostingListIter = PostingListIterator<'a>> {
postings_iterators: Vec<IndexedPostingListIterator<T>>,
query: RemappedSparseVector,
top: usize,
is_stopped: &'a AtomicBool,
top_results: TopK,
min_record_id: Option<PointOffsetType>, // min_record_id ids across all posting lists
max_record_id: PointOffsetType, // max_record_id ids across all posting lists
pooled: PooledScoresHandle<'b>, // handle to pooled scores
use_pruning: bool,
hardware_counter: HardwareCounterCell,
}
impl<'a, 'b, T: PostingListIter> SearchContext<'a, 'b, T> {
pub fn new(
query: RemappedSparseVector,
top: usize,
inverted_index: &'a impl InvertedIndex<Iter<'a> = T>,
pooled: PooledScoresHandle<'b>,
is_stopped: &'a AtomicBool,
) -> SearchContext<'a, 'b, T> {
let mut postings_iterators = Vec::new();
// track min and max record ids across all posting lists
let mut max_record_id = 0;
let mut min_record_id = u32::MAX;
// iterate over query indices
for (query_weight_offset, id) in query.indices.iter().enumerate() {
if let Some(mut it) = inverted_index.get(id) {
if let (Some(first), Some(last_id)) = (it.peek(), it.last_id()) {
// check if new min
let min_record_id_posting = first.record_id;
min_record_id = min(min_record_id, min_record_id_posting);
// check if new max
let max_record_id_posting = last_id;
max_record_id = max(max_record_id, max_record_id_posting);
// capture query info
let query_index = *id;
let query_weight = query.values[query_weight_offset];
postings_iterators.push(IndexedPostingListIterator {
posting_list_iterator: it,
query_index,
query_weight,
});
}
}
}
let top_results = TopK::new(top);
// Query vectors with negative values can NOT use the pruning mechanism which relies on the pre-computed `max_next_weight`.
// The max contribution per posting list that we calculate is not made to compute the max value of two negative numbers.
// This is a limitation of the current pruning implementation.
let use_pruning = T::reliable_max_next_weight() && query.values.iter().all(|v| *v >= 0.0);
let min_record_id = Some(min_record_id);
SearchContext {
postings_iterators,
query,
top,
is_stopped,
top_results,
min_record_id,
max_record_id,
pooled,
use_pruning,
hardware_counter: HardwareCounterCell::new(),
}
}
/// Plain search against the given ids without any pruning
pub fn plain_search(&mut self, ids: &[PointOffsetType]) -> Vec<ScoredPointOffset> {
// sort ids to fully leverage posting list iterator traversal
let mut sorted_ids = ids.to_vec();
sorted_ids.sort_unstable();
let cpu_counter = self.hardware_counter.cpu_counter_mut();
for id in sorted_ids {
// check for cancellation
if self.is_stopped.load(Relaxed) {
break;
}
let mut indices = Vec::with_capacity(self.query.indices.len());
let mut values = Vec::with_capacity(self.query.values.len());
// collect indices and values for the current record id from the query's posting lists *only*
for posting_iterator in self.postings_iterators.iter_mut() {
// rely on underlying binary search as the posting lists are sorted by record id
match posting_iterator.posting_list_iterator.skip_to(id) {
None => {} // no match for posting list
Some(element) => {
// match for posting list
indices.push(posting_iterator.query_index);
values.push(element.weight);
}
}
}
// Accumulate the sum of the length of the retrieved sparse vector and the query vector length
// as measurement for CPU usage of plain search.
cpu_counter.incr_delta_mut(indices.len() + self.query.indices.len());
// reconstruct sparse vector and score against query
let sparse_vector = RemappedSparseVector { indices, values };
self.top_results.push(ScoredPointOffset {
score: sparse_vector.score(&self.query).unwrap_or(0.0),
idx: id,
});
}
let top = std::mem::take(&mut self.top_results);
top.into_vec()
}
/// Advance posting lists iterators in a batch fashion.
fn advance_batch<F: Fn(PointOffsetType) -> bool>(
&mut self,
batch_start_id: PointOffsetType,
batch_last_id: PointOffsetType,
filter_condition: &F,
) {
// init batch scores
let batch_len = batch_last_id - batch_start_id + 1;
self.pooled.scores.clear(); // keep underlying allocated memory
self.pooled.scores.resize(batch_len as usize, 0.0);
for posting in self.postings_iterators.iter_mut() {
posting.posting_list_iterator.for_each_till_id(
batch_last_id,
self.pooled.scores.as_mut_slice(),
#[inline(always)]
|scores, id, weight| {
let element_score = weight * posting.query_weight;
let local_id = (id - batch_start_id) as usize;
// SAFETY: `id` is within `batch_start_id..=batch_last_id`
// Thus, `local_id` is within `0..batch_len`.
*unsafe { scores.get_unchecked_mut(local_id) } += element_score;
},
);
}
for (local_index, &score) in self.pooled.scores.iter().enumerate() {
// publish only the non-zero scores above the current min to beat
if score != 0.0 && score > self.top_results.threshold() {
let real_id = batch_start_id + local_index as PointOffsetType;
// do not score if filter condition is not satisfied
if !filter_condition(real_id) {
continue;
}
let score_point_offset = ScoredPointOffset {
score,
idx: real_id,
};
self.top_results.push(score_point_offset);
}
}
}
/// Compute scores for the last posting list quickly
fn process_last_posting_list<F: Fn(PointOffsetType) -> bool>(&mut self, filter_condition: &F) {
debug_assert_eq!(self.postings_iterators.len(), 1);
let posting = &mut self.postings_iterators[0];
posting.posting_list_iterator.for_each_till_id(
PointOffsetType::MAX,
&mut (),
|_, id, weight| {
// do not score if filter condition is not satisfied
if !filter_condition(id) {
return;
}
let score = weight * posting.query_weight;
self.top_results.push(ScoredPointOffset { score, idx: id });
},
);
}
/// Returns the next min record id from all posting list iterators
///
/// returns None if all posting list iterators are exhausted
fn next_min_id(to_inspect: &mut [IndexedPostingListIterator<T>]) -> Option<PointOffsetType> {
let mut min_record_id = None;
// Iterate to find min record id at the head of the posting lists
for posting_iterator in to_inspect.iter_mut() {
if let Some(next_element) = posting_iterator.posting_list_iterator.peek() {
match min_record_id {
None => min_record_id = Some(next_element.record_id), // first record with matching id
Some(min_id_seen) => {
// update min record id if smaller
if next_element.record_id < min_id_seen {
min_record_id = Some(next_element.record_id);
}
}
}
}
}
min_record_id
}
/// Make sure the longest posting list is at the head of the posting list iterators
fn promote_longest_posting_lists_to_the_front(&mut self) {
// find index of longest posting list
let posting_index = self
.postings_iterators
.iter()
.enumerate()
.max_by(|(_, a), (_, b)| {
a.posting_list_iterator
.len_to_end()
.cmp(&b.posting_list_iterator.len_to_end())
})
.map(|(index, _)| index);
if let Some(posting_index) = posting_index {
// make sure it is not already at the head
if posting_index != 0 {
// swap longest posting list to the head
self.postings_iterators.swap(0, posting_index);
}
}
}
/// Search for the top k results that satisfy the filter condition
pub fn search<F: Fn(PointOffsetType) -> bool>(
&mut self,
filter_condition: &F,
) -> Vec<ScoredPointOffset> {
if self.postings_iterators.is_empty() {
return Vec::new();
}
{
// Measure CPU usage of indexed sparse search.
// Assume the complexity of the search as total volume of the posting lists
// that are traversed in the batched search.
let cpu_counter = self.hardware_counter.cpu_counter_mut();
for posting in self.postings_iterators.iter() {
cpu_counter.incr_delta_mut(posting.posting_list_iterator.len_to_end());
}
}
let mut best_min_score = f32::MIN;
loop {
// check for cancellation (atomic amortized by batch)
if self.is_stopped.load(Relaxed) {
break;
}
// prepare next iterator of batched ids
let Some(start_batch_id) = self.min_record_id else {
break;
};
// compute batch range of contiguous ids for the next batch
let last_batch_id = min(
start_batch_id + ADVANCE_BATCH_SIZE as u32,
self.max_record_id,
);
// advance and score posting lists iterators
self.advance_batch(start_batch_id, last_batch_id, filter_condition);
// remove empty posting lists if necessary
self.postings_iterators.retain(|posting_iterator| {
posting_iterator.posting_list_iterator.len_to_end() != 0
});
// update min_record_id
self.min_record_id = Self::next_min_id(&mut self.postings_iterators);
// check if all posting lists are exhausted
if self.postings_iterators.is_empty() {
break;
}
// if only one posting list left, we can score it quickly
if self.postings_iterators.len() == 1 {
self.process_last_posting_list(filter_condition);
break;
}
// we potentially have enough results to prune low performing posting lists
if self.use_pruning && self.top_results.len() >= self.top {
// current min score
let new_min_score = self.top_results.threshold();
if new_min_score == best_min_score {
// no improvement in lowest best score since last pruning - skip pruning
continue;
} else {
best_min_score = new_min_score;
}
// make sure the first posting list is the longest for pruning
self.promote_longest_posting_lists_to_the_front();
// prune posting list that cannot possibly contribute to the top results
let pruned = self.prune_longest_posting_list(new_min_score);
if pruned {
// update min_record_id
self.min_record_id = Self::next_min_id(&mut self.postings_iterators);
}
}
}
// posting iterators exhausted, return result queue
let queue = std::mem::take(&mut self.top_results);
queue.into_vec()
}
/// Prune posting lists that cannot possibly contribute to the top results
/// Assumes longest posting list is at the head of the posting list iterators
/// Returns true if the longest posting list was pruned
pub fn prune_longest_posting_list(&mut self, min_score: f32) -> bool {
if self.postings_iterators.is_empty() {
return false;
}
// peek first element of longest posting list
let (longest_posting_iterator, rest_iterators) = self.postings_iterators.split_at_mut(1);
let longest_posting_iterator = &mut longest_posting_iterator[0];
if let Some(element) = longest_posting_iterator.posting_list_iterator.peek() {
let next_min_id_in_others = Self::next_min_id(rest_iterators);
match next_min_id_in_others {
Some(next_min_id) => {
match next_min_id.cmp(&element.record_id) {
Ordering::Equal => {
// if the next min id in the other posting lists is the same as the current one,
// we can't prune the current element as it needs to be scored properly across posting lists
return false;
}
Ordering::Less => {
// we can't prune as there the other posting lists contains smaller smaller ids that need to scored first
return false;
}
Ordering::Greater => {
// next_min_id is > element.record_id there is a chance to prune up to `next_min_id`
// check against the max possible score using the `max_next_weight`
// we can under prune as we should actually check the best score up to `next_min_id` - 1 only
// instead of the max possible score but it is not possible to know the best score up to `next_min_id` - 1
let max_weight_from_list = element.weight.max(element.max_next_weight);
let max_score_contribution =
max_weight_from_list * longest_posting_iterator.query_weight;
if max_score_contribution <= min_score {
// prune to next_min_id
let longest_posting_iterator =
&mut self.postings_iterators[0].posting_list_iterator;
let position_before_pruning =
longest_posting_iterator.current_index();
longest_posting_iterator.skip_to(next_min_id);
let position_after_pruning =
longest_posting_iterator.current_index();
// check if pruning took place
return position_before_pruning != position_after_pruning;
}
}
}
}
None => {
// the current posting list is the only one left, we can potentially skip it to the end
// check against the max possible score using the `max_next_weight`
let max_weight_from_list = element.weight.max(element.max_next_weight);
let max_score_contribution =
max_weight_from_list * longest_posting_iterator.query_weight;
if max_score_contribution <= min_score {
// prune to the end!
let longest_posting_iterator = &mut self.postings_iterators[0];
longest_posting_iterator.posting_list_iterator.skip_to_end();
return true;
}
}
}
}
// no pruning took place
false
}
/// Return the current hardware measurement counter.
pub fn take_hardware_counter(&self) -> HardwareCounterCell {
self.hardware_counter.take()
}
}
#[cfg(test)]
#[generic_tests::define]
mod tests {
use std::any::TypeId;
use std::borrow::Cow;
use std::sync::OnceLock;
use rand::Rng;
use tempfile::TempDir;
use super::*;
use crate::common::scores_memory_pool::ScoresMemoryPool;
use crate::common::sparse_vector::SparseVector;
use crate::common::sparse_vector_fixture::random_sparse_vector;
use crate::common::types::QuantizedU8;
use crate::index::inverted_index::inverted_index_compressed_immutable_ram::InvertedIndexCompressedImmutableRam;
use crate::index::inverted_index::inverted_index_compressed_mmap::InvertedIndexCompressedMmap;
use crate::index::inverted_index::inverted_index_immutable_ram::InvertedIndexImmutableRam;
use crate::index::inverted_index::inverted_index_mmap::InvertedIndexMmap;
use crate::index::inverted_index::inverted_index_ram::InvertedIndexRam;
use crate::index::inverted_index::inverted_index_ram_builder::InvertedIndexBuilder;
// ---- Test instantiations ----
#[instantiate_tests(<InvertedIndexRam>)]
mod ram {}
#[instantiate_tests(<InvertedIndexMmap>)]
mod mmap {}
#[instantiate_tests(<InvertedIndexImmutableRam>)]
mod iram {}
#[instantiate_tests(<InvertedIndexCompressedImmutableRam<f32>>)]
mod iram_f32 {}
#[instantiate_tests(<InvertedIndexCompressedImmutableRam<half::f16>>)]
mod iram_f16 {}
#[instantiate_tests(<InvertedIndexCompressedImmutableRam<u8>>)]
mod iram_u8 {}
#[instantiate_tests(<InvertedIndexCompressedImmutableRam<QuantizedU8>>)]
mod iram_q8 {}
#[instantiate_tests(<InvertedIndexCompressedMmap<f32>>)]
mod mmap_f32 {}
#[instantiate_tests(<InvertedIndexCompressedMmap<half::f16>>)]
mod mmap_f16 {}
#[instantiate_tests(<InvertedIndexCompressedMmap<u8>>)]
mod mmap_u8 {}
#[instantiate_tests(<InvertedIndexCompressedMmap<QuantizedU8>>)]
mod mmap_q8 {}
// --- End of test instantiations ---
static TEST_SCORES_POOL: OnceLock<ScoresMemoryPool> = OnceLock::new();
fn get_pooled_scores() -> PooledScoresHandle<'static> {
TEST_SCORES_POOL
.get_or_init(ScoresMemoryPool::default)
.get()
}
/// Match all filter condition for testing
fn match_all(_p: PointOffsetType) -> bool {
true
}
/// Helper struct to store both an index and a temporary directory
struct TestIndex<I: InvertedIndex> {
index: I,
temp_dir: TempDir,
}
impl<I: InvertedIndex> TestIndex<I> {
fn from_ram(ram_index: InvertedIndexRam) -> Self {
let temp_dir = tempfile::Builder::new()
.prefix("test_index_dir")
.tempdir()
.unwrap();
TestIndex {
index: I::from_ram_index(Cow::Owned(ram_index), &temp_dir).unwrap(),
temp_dir,
}
}
}
/// Round scores to allow some quantization errors
fn round_scores<I: 'static>(mut scores: Vec<ScoredPointOffset>) -> Vec<ScoredPointOffset> {
let errors_allowed_for = [
TypeId::of::<InvertedIndexCompressedImmutableRam<QuantizedU8>>(),
TypeId::of::<InvertedIndexCompressedMmap<QuantizedU8>>(),
];
if errors_allowed_for.contains(&TypeId::of::<I>()) {
let precision = 0.25;
scores.iter_mut().for_each(|score| {
score.score = (score.score / precision).round() * precision;
});
scores
} else {
scores
}
}
#[test]
fn test_empty_query<I: InvertedIndex>() {
let index = TestIndex::<I>::from_ram(InvertedIndexRam::empty());
let is_stopped = AtomicBool::new(false);
let mut search_context = SearchContext::new(
RemappedSparseVector::default(), // empty query vector
10,
&index.index,
get_pooled_scores(),
&is_stopped,
);
assert_eq!(search_context.search(&match_all), Vec::new());
}
#[test]
fn search_test<I: InvertedIndex>() {
let index = TestIndex::<I>::from_ram({
let mut builder = InvertedIndexBuilder::new();
builder.add(1, [(1, 10.0), (2, 10.0), (3, 10.0)].into());
builder.add(2, [(1, 20.0), (2, 20.0), (3, 20.0)].into());
builder.add(3, [(1, 30.0), (2, 30.0), (3, 30.0)].into());
builder.build()
});
let is_stopped = AtomicBool::new(false);
let mut search_context = SearchContext::new(
RemappedSparseVector {
indices: vec![1, 2, 3],
values: vec![1.0, 1.0, 1.0],
},
10,
&index.index,
get_pooled_scores(),
&is_stopped,
);
assert_eq!(
round_scores::<I>(search_context.search(&match_all)),
vec![
ScoredPointOffset {
score: 90.0,
idx: 3
},
ScoredPointOffset {
score: 60.0,
idx: 2
},
ScoredPointOffset {
score: 30.0,
idx: 1
},
]
);
// len(QueryVector)=3 * len(vector)=3 => 3*3 => 9
let counter = search_context.take_hardware_counter();
assert_eq!(counter.cpu_counter().get(), 9);
counter.discard_results();
}
#[test]
fn search_with_update_test<I: InvertedIndex + 'static>() {
if TypeId::of::<I>() != TypeId::of::<InvertedIndexRam>() {
// Only InvertedIndexRam supports upserts
return;
}
let mut index = TestIndex::<I>::from_ram({
let mut builder = InvertedIndexBuilder::new();
builder.add(1, [(1, 10.0), (2, 10.0), (3, 10.0)].into());
builder.add(2, [(1, 20.0), (2, 20.0), (3, 20.0)].into());
builder.add(3, [(1, 30.0), (2, 30.0), (3, 30.0)].into());
builder.build()
});
let is_stopped = AtomicBool::new(false);
let mut search_context = SearchContext::new(
RemappedSparseVector {
indices: vec![1, 2, 3],
values: vec![1.0, 1.0, 1.0],
},
10,
&index.index,
get_pooled_scores(),
&is_stopped,
);
assert_eq!(
round_scores::<I>(search_context.search(&match_all)),
vec![
ScoredPointOffset {
score: 90.0,
idx: 3
},
ScoredPointOffset {
score: 60.0,
idx: 2
},
ScoredPointOffset {
score: 30.0,
idx: 1
},
]
);
search_context.take_hardware_counter().discard_results();
drop(search_context);
// update index with new point
index.index.upsert(
4,
RemappedSparseVector {
indices: vec![1, 2, 3],
values: vec![40.0, 40.0, 40.0],
},
None,
);
let mut search_context = SearchContext::new(
RemappedSparseVector {
indices: vec![1, 2, 3],
values: vec![1.0, 1.0, 1.0],
},
10,
&index.index,
get_pooled_scores(),
&is_stopped,
);
assert_eq!(
search_context.search(&match_all),
vec![
ScoredPointOffset {
score: 120.0,
idx: 4
},
ScoredPointOffset {
score: 90.0,
idx: 3
},
ScoredPointOffset {
score: 60.0,
idx: 2
},
ScoredPointOffset {
score: 30.0,
idx: 1
},
]
);
search_context.take_hardware_counter().discard_results();
}
#[test]
fn search_with_hot_key_test<I: InvertedIndex>() {
let index = TestIndex::<I>::from_ram({
let mut builder = InvertedIndexBuilder::new();
builder.add(1, [(1, 10.0), (2, 10.0), (3, 10.0)].into());
builder.add(2, [(1, 20.0), (2, 20.0), (3, 20.0)].into());
builder.add(3, [(1, 30.0), (2, 30.0), (3, 30.0)].into());
builder.add(4, [(1, 1.0)].into());
builder.add(5, [(1, 2.0)].into());
builder.add(6, [(1, 3.0)].into());
builder.add(7, [(1, 4.0)].into());
builder.add(8, [(1, 5.0)].into());
builder.add(9, [(1, 6.0)].into());
builder.build()
});
let is_stopped = AtomicBool::new(false);
let mut search_context = SearchContext::new(
RemappedSparseVector {
indices: vec![1, 2, 3],
values: vec![1.0, 1.0, 1.0],
},
3,
&index.index,
get_pooled_scores(),
&is_stopped,
);
assert_eq!(
round_scores::<I>(search_context.search(&match_all)),
vec![
ScoredPointOffset {
score: 90.0,
idx: 3
},
ScoredPointOffset {
score: 60.0,
idx: 2
},
ScoredPointOffset {
score: 30.0,
idx: 1
},
]
);
// [ID=1] (Retrieve all 9 Vectors) => 9
// [ID=2] (Retrieve 1-3) => 3
// [ID=3] (Retrieve 1-3) => 3
// 3 + 3 + 9 => 15
assert_eq!(search_context.hardware_counter.cpu_counter().get(), 15);
search_context.take_hardware_counter().discard_results();
let mut search_context = SearchContext::new(
RemappedSparseVector {
indices: vec![1, 2, 3],
values: vec![1.0, 1.0, 1.0],
},
4,
&index.index,
get_pooled_scores(),
&is_stopped,
);
assert_eq!(
round_scores::<I>(search_context.search(&match_all)),
vec![
ScoredPointOffset {
score: 90.0,
idx: 3
},
ScoredPointOffset {
score: 60.0,
idx: 2
},
ScoredPointOffset {
score: 30.0,
idx: 1
},
ScoredPointOffset { score: 6.0, idx: 9 },
]
);
// No difference to previous calculation because it's the same amount of score
// calculations when increasing the "top" parameter.
assert_eq!(search_context.hardware_counter.cpu_counter().get(), 15);
search_context.take_hardware_counter().discard_results();
}
#[test]
fn pruning_single_to_end_test<I: InvertedIndex>() {
let index = TestIndex::<I>::from_ram({
let mut builder = InvertedIndexBuilder::new();
builder.add(1, [(1, 10.0)].into());
builder.add(2, [(1, 20.0)].into());
builder.add(3, [(1, 30.0)].into());
builder.build()
});
let is_stopped = AtomicBool::new(false);
let mut search_context = SearchContext::new(
RemappedSparseVector {
indices: vec![1, 2, 3],
values: vec![1.0, 1.0, 1.0],
},
1,
&index.index,
get_pooled_scores(),
&is_stopped,
);
// assuming we have gathered enough results and want to prune the longest posting list
assert!(search_context.prune_longest_posting_list(30.0));
// the longest posting list was pruned to the end
assert_eq!(
search_context.postings_iterators[0]
.posting_list_iterator
.len_to_end(),
0
);
}
#[test]
fn pruning_multi_to_end_test<I: InvertedIndex>() {
let index = TestIndex::<I>::from_ram({
let mut builder = InvertedIndexBuilder::new();
builder.add(1, [(1, 10.0)].into());
builder.add(2, [(1, 20.0)].into());
builder.add(3, [(1, 30.0)].into());
builder.add(5, [(3, 10.0)].into());
builder.add(6, [(2, 20.0), (3, 20.0)].into());
builder.add(7, [(2, 30.0), (3, 30.0)].into());
builder.build()
});
let is_stopped = AtomicBool::new(false);
let mut search_context = SearchContext::new(
RemappedSparseVector {
indices: vec![1, 2, 3],
values: vec![1.0, 1.0, 1.0],
},
1,
&index.index,
get_pooled_scores(),
&is_stopped,
);
// assuming we have gathered enough results and want to prune the longest posting list
assert!(search_context.prune_longest_posting_list(30.0));
// the longest posting list was pruned to the end
assert_eq!(
search_context.postings_iterators[0]
.posting_list_iterator
.len_to_end(),
0
);
}
#[test]
fn pruning_multi_under_prune_test<I: InvertedIndex>() {
if !I::Iter::reliable_max_next_weight() {
return;
}
let index = TestIndex::<I>::from_ram({
let mut builder = InvertedIndexBuilder::new();
builder.add(1, [(1, 10.0)].into());
builder.add(2, [(1, 20.0)].into());
builder.add(3, [(1, 20.0)].into());
builder.add(4, [(1, 10.0)].into());
builder.add(5, [(3, 10.0)].into());
builder.add(6, [(1, 20.0), (2, 20.0), (3, 20.0)].into());
builder.add(7, [(1, 40.0), (2, 30.0), (3, 30.0)].into());
builder.build()
});
let is_stopped = AtomicBool::new(false);
let mut search_context = SearchContext::new(
RemappedSparseVector {
indices: vec![1, 2, 3],
values: vec![1.0, 1.0, 1.0],
},
1,
&index.index,
get_pooled_scores(),
&is_stopped,
);
// one would expect this to prune up to `6` but it does not happen it practice because we are under pruning by design
// we should actually check the best score up to `6` - 1 only instead of the max possible score (40.0)
assert!(!search_context.prune_longest_posting_list(30.0));
assert!(search_context.prune_longest_posting_list(40.0));
// the longest posting list was pruned to the end
assert_eq!(
search_context.postings_iterators[0]
.posting_list_iterator
.len_to_end(),
2 // 6, 7
);
}
/// Generates a random inverted index with `num_vectors` vectors
fn random_inverted_index<R: Rng + ?Sized>(
rnd_gen: &mut R,
num_vectors: u32,
max_sparse_dimension: usize,
) -> InvertedIndexRam {
let mut inverted_index_ram = InvertedIndexRam::empty();
for i in 1..=num_vectors {
let SparseVector { indices, values } =
random_sparse_vector(rnd_gen, max_sparse_dimension);
let vector = RemappedSparseVector::new(indices, values).unwrap();
inverted_index_ram.upsert(i, vector, None);
}
inverted_index_ram
}
#[test]
fn promote_longest_test<I: InvertedIndex>() {
let index = TestIndex::<I>::from_ram({
let mut builder = InvertedIndexBuilder::new();
builder.add(1, [(1, 10.0), (2, 10.0), (3, 10.0)].into());
builder.add(2, [(1, 20.0), (3, 20.0)].into());
builder.add(3, [(2, 30.0), (3, 30.0)].into());
builder.build()
});
let is_stopped = AtomicBool::new(false);
let mut search_context = SearchContext::new(
RemappedSparseVector {
indices: vec![1, 2, 3],
values: vec![1.0, 1.0, 1.0],
},
3,
&index.index,
get_pooled_scores(),
&is_stopped,
);
assert_eq!(
search_context.postings_iterators[0]
.posting_list_iterator
.len_to_end(),
2
);
search_context.promote_longest_posting_lists_to_the_front();
assert_eq!(
search_context.postings_iterators[0]
.posting_list_iterator
.len_to_end(),
3
);
}
#[test]
fn plain_search_all_test<I: InvertedIndex>() {
let index = TestIndex::<I>::from_ram({
let mut builder = InvertedIndexBuilder::new();
builder.add(1, [(1, 10.0), (2, 10.0), (3, 10.0)].into());
builder.add(2, [(1, 20.0), (3, 20.0)].into());
builder.add(3, [(1, 30.0), (3, 30.0)].into());
builder.build()
});
let is_stopped = AtomicBool::new(false);
let mut search_context = SearchContext::new(
RemappedSparseVector {
indices: vec![1, 2, 3],
values: vec![1.0, 1.0, 1.0],
},
3,
&index.index,
get_pooled_scores(),
&is_stopped,
);
let scores = search_context.plain_search(&[1, 3, 2]);
assert_eq!(
round_scores::<I>(scores),
vec![
ScoredPointOffset {
idx: 3,
score: 60.0
},
ScoredPointOffset {
idx: 2,
score: 40.0
},
ScoredPointOffset {
idx: 1,
score: 30.0
},
]
);
// [ID=1] (Retrieve three sparse vectors (1,2,3)) + QueryLength=3 => 6
// [ID=2] (Retrieve two sparse vectors (1,3)) + QueryLength=3 => 5
// [ID=3] (Retrieve two sparse vectors (1,3)) + QueryLength=3 => 5
// 6 + 5 + 5 => 16
let hardware_counter = search_context.take_hardware_counter();
assert_eq!(hardware_counter.cpu_counter().get(), 16);
hardware_counter.discard_results();
}
#[test]
fn plain_search_gap_test<I: InvertedIndex>() {
let index = TestIndex::<I>::from_ram({
let mut builder = InvertedIndexBuilder::new();
builder.add(1, [(1, 10.0), (2, 10.0), (3, 10.0)].into());
builder.add(2, [(1, 20.0), (3, 20.0)].into());
builder.add(3, [(2, 30.0), (3, 30.0)].into());
builder.build()
});
// query vector has a gap for dimension 2
let is_stopped = AtomicBool::new(false);
let mut search_context = SearchContext::new(
RemappedSparseVector {
indices: vec![1, 3],
values: vec![1.0, 1.0],
},
3,
&index.index,
get_pooled_scores(),
&is_stopped,
);
let scores = search_context.plain_search(&[1, 2, 3]);
assert_eq!(
round_scores::<I>(scores),
vec![
ScoredPointOffset {
idx: 2,
score: 40.0
},
ScoredPointOffset {
idx: 3,
score: 30.0 // the dimension 2 did not contribute to the score
},
ScoredPointOffset {
idx: 1,
score: 20.0 // the dimension 2 did not contribute to the score
},
]
);
// [ID=1] (Retrieve two sparse vectors (1,2)) + QueryLength=2 => 4
// [ID=2] (Retrieve two sparse vectors (1,3)) + QueryLength=2 => 4
// [ID=3] (Retrieve one sparse vector (3)) + QueryLength=2 => 3
// 4 + 4 + 3 => 11
let hardware_counter = search_context.take_hardware_counter();
assert_eq!(hardware_counter.cpu_counter().get(), 11);
hardware_counter.discard_results();
}
}
|