File size: 4,741 Bytes
3932407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import pathlib

from .utils import *
from .assertions import assert_http_ok

N_PEERS = 3
N_SHARDS = 4
N_REPLICA = 2


def test_collection_shard_update(tmp_path: pathlib.Path):
    assert_project_root()
    peer_dirs = make_peer_folders(tmp_path, N_PEERS)

    # Gathers REST API uris
    peer_api_uris = []

    # Start bootstrap
    (bootstrap_api_uri, bootstrap_uri) = start_first_peer(
        peer_dirs[0], "peer_0_0.log")
    peer_api_uris.append(bootstrap_api_uri)

    # Wait for leader
    leader = wait_peer_added(bootstrap_api_uri)

    # Start other peers
    for i in range(1, len(peer_dirs)):
        peer_api_uris.append(start_peer(
            peer_dirs[i], f"peer_0_{i}.log", bootstrap_uri))

    # Wait for cluster
    wait_for_uniform_cluster_status(peer_api_uris, leader)

    # Check that there are no collections on all peers
    for uri in peer_api_uris:
        r = requests.get(f"{uri}/collections")
        assert_http_ok(r)
        assert len(r.json()["result"]["collections"]) == 0

    # Create collection in first peer
    r = requests.put(
        f"{peer_api_uris[0]}/collections/test_collection", json={
            "vectors": {
                "image": {
                    "size": 4,
                    "distance": "Dot"
                },
                "text": {
                    "size": 4,
                    "distance": "Cosine"
                }
            },
            "shard_number": N_SHARDS,
            "replication_factor": N_REPLICA,
        })
    assert_http_ok(r)

    # Check that it exists on all peers
    wait_collection_exists_and_active_on_all_peers(collection_name="test_collection", peer_api_uris=peer_api_uris)

    # Check collection's cluster info
    collection_cluster_info = get_collection_cluster_info(peer_api_uris[0], "test_collection")
    assert collection_cluster_info["shard_count"] == N_SHARDS

    # Create request with missing named vectors in first peer's collection
    r = requests.put(
        f"{peer_api_uris[0]}/collections/test_collection/points?wait=true", json={
            "points": [
                {
                    "id": 1,
                    "vector": {
                        "image": [0.05, 0.61, 0.76, 0.74],
                        "text": [0.05, 0.61, 0.76, 0.74]
                    }
                },
                {
                    "id": 2,
                    "vector": {
                        "image": [0.05, 0.61, 0.76, 0.74]
                    }
                },
                {
                    "id": 3,
                    "vector": {
                        "image": [0.05, 0.61, 0.76, 0.74],
                        "text": [0.05, 0.61, 0.76, 0.74]
                    }
                },
                {
                    "id": 4,
                    "vector": {
                        "image": [0.05, 0.61, 0.76, 0.74],
                        "text": [0.05, 0.61, 0.76, 0.74]
                    }
                }
            ]
        })
    assert_http_ok(r)

    # Create malformed points in first peer's collection
    r = requests.put(
        f"{peer_api_uris[0]}/collections/test_collection/points?wait=true", json={
            "points": [
                {
                    "id": 1,
                    "vector": {
                        "image": [0.05, 0.61, 0.76, 0.74],
                        "text": [0.05, 0.61, 0.76, 0.74]
                    }
                },
                {
                    "id": 2,
                    "vector": {
                        "image": [0.05, 0.61, 0.76]
                    }
                },
                {
                    "id": 3,
                    "vector": {
                        "image": [0.05, 0.61, 0.76, 0.74],
                        "text": [0.05, 0.61, 0.76, 0.74]
                    }
                },
                {
                    "id": 4,
                    "vector": {
                        "image": [0.05, 0.61, 0.76, 0.74],
                        "text": [0.05, 0.61, 0.76, 0.74]
                    }
                }
            ]
        })

    assert r.status_code == 400
    error = r.json()["status"]["error"]
    assert error.__contains__("Wrong input: 1 out of 2 shards failed to apply operation")
    # Update requests are applied on the local shard and propagated to the remote shards in parallel.
    # These operations may complete (or fail) in arbitrary order, and if request fails, Qdrant returns
    # error message of the first failed operation.
    # Local and remote operations return different errors, so we check for both.
    assert error.__contains__("Wrong input: Vector dimension error: expected dim") or error.__contains__("Wrong input: InvalidArgument")