File size: 6,550 Bytes
3932407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import pathlib

from .utils import *

N_PEERS = 5
N_SHARDS = 4
N_REPLICA = 2


def test_points_recommendation(tmp_path: pathlib.Path):
    assert_project_root()
    peer_dirs = make_peer_folders(tmp_path, N_PEERS)

    # Gathers REST API uris
    peer_api_uris = []

    # Start bootstrap
    (bootstrap_api_uri, bootstrap_uri) = start_first_peer(
        peer_dirs[0], "peer_0_0.log")
    peer_api_uris.append(bootstrap_api_uri)

    # Wait for leader
    leader = wait_peer_added(bootstrap_api_uri)

    # Start other peers
    for i in range(1, len(peer_dirs)):
        peer_api_uris.append(start_peer(
            peer_dirs[i], f"peer_0_{i}.log", bootstrap_uri))

    # Wait for cluster
    wait_for_uniform_cluster_status(peer_api_uris, leader)

    # Check that there are no collections on all peers
    for uri in peer_api_uris:
        r_batch = requests.get(f"{uri}/collections")
        assert_http_ok(r_batch)
        assert len(r_batch.json()["result"]["collections"]) == 0

    # Create collection in first peer
    r_batch = requests.put(
        f"{peer_api_uris[0]}/collections/test_collection", json={
            "vectors": {
                "size": 4,
                "distance": "Dot"
            },
            "shard_number": N_SHARDS,
            "replication_factor": N_REPLICA,
        })
    assert_http_ok(r_batch)

    # Check that it exists on all peers
    wait_collection_exists_and_active_on_all_peers(collection_name="test_collection", peer_api_uris=peer_api_uris)

    # Check collection's cluster info
    collection_cluster_info = get_collection_cluster_info(peer_api_uris[0], "test_collection")
    assert collection_cluster_info["shard_count"] == N_SHARDS

    # Create points in first peer's collection
    r_batch = requests.put(
        f"{peer_api_uris[0]}/collections/test_collection/points?wait=true", json={
            "points": [
                {
                    "id": 1,
                    "vector": [0.05, 0.61, 0.76, 0.74],
                    "payload": {
                        "city": "Berlin",
                        "country": "Germany",
                        "count": 1000000,
                        "square": 12.5,
                        "coords": {"lat": 1.0, "lon": 2.0}
                    }
                },
                {"id": 2, "vector": [0.19, 0.81, 0.75, 0.11],
                 "payload": {"city": ["Berlin", "London"]}},
                {"id": 3, "vector": [0.36, 0.55, 0.47, 0.94],
                 "payload": {"city": ["Berlin", "Moscow"]}},
                {"id": 4, "vector": [0.18, 0.01, 0.85, 0.80],
                 "payload": {"city": ["London", "Moscow"]}},
                {"id": 5, "vector": [0.24, 0.18, 0.22, 0.44],
                 "payload": {"count": [0]}},
                {"id": 6, "vector": [0.35, 0.08, 0.11, 0.44]},
                {"id": 7, "vector": [0.45, 0.07, 0.21, 0.04]},
                {"id": 8, "vector": [0.75, 0.18, 0.91, 0.48]},
                {"id": 9, "vector": [0.30, 0.01, 0.1, 0.12]},
                {"id": 10, "vector": [0.95, 0.8, 0.17, 0.19]}
            ]
        })
    assert_http_ok(r_batch)

    # Check that 'recommendation' & `recommendation_batch` return the same results on all peers
    q = {
        "positive": [2, 3],
        "negative": [10],
        "top": 3,
        "offset": 1,
        "with_vector": True,
        "with_payload": True,
        "score_threshold": 0.1
    }

    # Capture result from first peer
    r_init_search = requests.post(
        f"{peer_api_uris[0]}/collections/test_collection/points/recommend", json=q
    ).json()["result"]

    for uri in peer_api_uris:
        r_search = requests.post(
            f"{uri}/collections/test_collection/points/recommend", json=q
        )
        assert_http_ok(r_search)

        r_batch = requests.post(
            f"{uri}/collections/test_collection/points/recommend/batch", json={
                "searches": [q]
            }
        )
        assert_http_ok(r_batch)
        # only one search in the batch
        assert len(r_batch.json()["result"]) == 1
        # assert same number of results
        assert len(r_search.json()["result"]) == len(r_batch.json()["result"][0])
        # assert stable across peers
        assert r_search.json()["result"] == r_init_search
        # search equivalent to single batch
        assert r_search.json()["result"] == r_batch.json()["result"][0]

    # Check that `recommend_batch` return the same results on all peers for duplicated searches
    for uri in peer_api_uris:
        r_batch = requests.post(
            f"{uri}/collections/test_collection/points/recommend/batch", json={
                "searches": [q, q, q, q]
            }
        )
        assert_http_ok(r_batch)

        # assert num searches
        assert len(r_batch.json()["result"]) == 4
        # assert the search limit
        assert len(r_batch.json()["result"][0]) == 3
        assert len(r_batch.json()["result"][1]) == 3
        assert len(r_batch.json()["result"][2]) == 3
        assert len(r_batch.json()["result"][3]) == 3

        assert r_batch.json()["result"] == [r_init_search, r_init_search, r_init_search, r_init_search]

    # Check that `search_batch` return the same results on all peers compared to multiple searches
    q1 = {
        "positive": [2, 3],
        "negative": [10],
        "top": 3,
        "offset": 1,
        "with_vector": True
    }
    q2 = {
        "positive": [2, 3],
        "negative": [10],
        "top": 5,
        "offset": 3,
        "with_payload": True,
    }
    q3 = {
        "positive": [2, 3],
        "negative": [10],
        "top": 10,
        "score_threshold": 1.1
    }
    for uri in peer_api_uris:
        r_batch = requests.post(
            f"{uri}/collections/test_collection/points/recommend/batch", json={
                "searches": [q1, q2, q3]
            }
        )
        assert_http_ok(r_batch)

        r_search_1 = requests.post(
            f"{uri}/collections/test_collection/points/recommend", json=q1
        )
        assert_http_ok(r_search_1)
        r_search_2 = requests.post(
            f"{uri}/collections/test_collection/points/recommend", json=q2
        )
        assert_http_ok(r_search_2)

        r_search_3 = requests.post(
            f"{uri}/collections/test_collection/points/recommend", json=q3
        )
        assert_http_ok(r_search_3)

        accumulated = [r_search_1.json()["result"], r_search_2.json()["result"], r_search_3.json()["result"]]
        assert accumulated == r_batch.json()["result"]