Gouzi Mohaled
Ajout du dossier lib
84d2a97
#[cfg(not(target_os = "windows"))]
mod prof;
use criterion::{criterion_group, criterion_main, Criterion};
use half::f16;
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use segment::data_types::vectors::{VectorElementTypeByte, VectorElementTypeHalf};
use segment::spaces::metric::Metric;
#[cfg(target_arch = "x86_64")]
use segment::spaces::metric_f16::avx::dot::avx_dot_similarity_half;
#[cfg(target_arch = "x86_64")]
use segment::spaces::metric_f16::avx::euclid::avx_euclid_similarity_half;
#[cfg(target_arch = "x86_64")]
use segment::spaces::metric_f16::avx::manhattan::avx_manhattan_similarity_half;
#[cfg(target_arch = "aarch64")]
use segment::spaces::metric_f16::neon::dot::neon_dot_similarity_half;
#[cfg(target_arch = "aarch64")]
use segment::spaces::metric_f16::neon::euclid::neon_euclid_similarity_half;
#[cfg(target_arch = "aarch64")]
use segment::spaces::metric_f16::neon::manhattan::neon_manhattan_similarity_half;
use segment::spaces::metric_f16::simple_dot::dot_similarity_half;
use segment::spaces::metric_f16::simple_euclid::euclid_similarity_half;
use segment::spaces::metric_f16::simple_manhattan::manhattan_similarity_half;
#[cfg(target_arch = "x86_64")]
use segment::spaces::metric_f16::sse::dot::sse_dot_similarity_half;
#[cfg(target_arch = "x86_64")]
use segment::spaces::metric_f16::sse::euclid::sse_euclid_similarity_half;
#[cfg(target_arch = "x86_64")]
use segment::spaces::metric_f16::sse::manhattan::sse_manhattan_similarity_half;
#[cfg(target_arch = "x86_64")]
use segment::spaces::metric_uint::avx2::cosine::avx_cosine_similarity_bytes;
#[cfg(target_arch = "x86_64")]
use segment::spaces::metric_uint::avx2::dot::avx_dot_similarity_bytes;
#[cfg(target_arch = "x86_64")]
use segment::spaces::metric_uint::avx2::euclid::avx_euclid_similarity_bytes;
#[cfg(target_arch = "x86_64")]
use segment::spaces::metric_uint::avx2::manhattan::avx_manhattan_similarity_bytes;
#[cfg(target_arch = "aarch64")]
use segment::spaces::metric_uint::neon::cosine::neon_cosine_similarity_bytes;
#[cfg(target_arch = "aarch64")]
use segment::spaces::metric_uint::neon::dot::neon_dot_similarity_bytes;
#[cfg(target_arch = "aarch64")]
use segment::spaces::metric_uint::neon::euclid::neon_euclid_similarity_bytes;
#[cfg(target_arch = "aarch64")]
use segment::spaces::metric_uint::neon::manhattan::neon_manhattan_similarity_bytes;
use segment::spaces::metric_uint::simple_cosine::cosine_similarity_bytes;
use segment::spaces::metric_uint::simple_dot::dot_similarity_bytes;
use segment::spaces::metric_uint::simple_euclid::euclid_similarity_bytes;
use segment::spaces::metric_uint::simple_manhattan::manhattan_similarity_bytes;
#[cfg(target_arch = "x86_64")]
use segment::spaces::metric_uint::sse2::cosine::sse_cosine_similarity_bytes;
#[cfg(target_arch = "x86_64")]
use segment::spaces::metric_uint::sse2::dot::sse_dot_similarity_bytes;
#[cfg(target_arch = "x86_64")]
use segment::spaces::metric_uint::sse2::euclid::sse_euclid_similarity_bytes;
#[cfg(target_arch = "x86_64")]
use segment::spaces::metric_uint::sse2::manhattan::sse_manhattan_similarity_bytes;
use segment::spaces::simple::{CosineMetric, DotProductMetric, EuclidMetric, ManhattanMetric};
const DIM: usize = 1024;
const COUNT: usize = 100_000;
fn byte_metrics_bench(c: &mut Criterion) {
let mut group = c.benchmark_group("byte-metrics-bench-group");
let mut rng = StdRng::seed_from_u64(42);
let random_vectors_1: Vec<Vec<u8>> = (0..COUNT)
.map(|_| (0..DIM).map(|_| rng.gen_range(0..=255)).collect())
.collect();
let random_vectors_2: Vec<Vec<u8>> = (0..COUNT)
.map(|_| (0..DIM).map(|_| rng.gen_range(0..=255)).collect())
.collect();
group.bench_function("byte-dot", |b| {
let mut i = 0;
b.iter(|| {
i = (i + 1) % COUNT;
<DotProductMetric as Metric<VectorElementTypeByte>>::similarity(
&random_vectors_1[i],
&random_vectors_2[i],
)
});
});
group.bench_function("byte-dot-no-simd", |b| {
let mut i = 0;
b.iter(|| {
i = (i + 1) % COUNT;
dot_similarity_bytes(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "x86_64")]
group.bench_function("byte-dot-avx", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
avx_dot_similarity_bytes(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "x86_64")]
group.bench_function("byte-dot-sse", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
sse_dot_similarity_bytes(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "aarch64")]
group.bench_function("byte-dot-neon", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
neon_dot_similarity_bytes(&random_vectors_1[i], &random_vectors_2[i])
});
});
group.bench_function("byte-cosine", |b| {
let mut i = 0;
b.iter(|| {
i = (i + 1) % COUNT;
<CosineMetric as Metric<VectorElementTypeByte>>::similarity(
&random_vectors_1[i],
&random_vectors_2[i],
)
});
});
group.bench_function("byte-cosine-no-simd", |b| {
let mut i = 0;
b.iter(|| {
i = (i + 1) % COUNT;
cosine_similarity_bytes(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "x86_64")]
group.bench_function("byte-cosine-avx", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
avx_cosine_similarity_bytes(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "x86_64")]
group.bench_function("byte-cosine-sse", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
sse_cosine_similarity_bytes(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "aarch64")]
group.bench_function("byte-cosine-neon", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
neon_cosine_similarity_bytes(&random_vectors_1[i], &random_vectors_2[i])
});
});
group.bench_function("byte-euclid", |b| {
let mut i = 0;
b.iter(|| {
i = (i + 1) % COUNT;
<EuclidMetric as Metric<VectorElementTypeByte>>::similarity(
&random_vectors_1[i],
&random_vectors_2[i],
)
});
});
group.bench_function("byte-euclid-no-simd", |b| {
let mut i = 0;
b.iter(|| {
i = (i + 1) % COUNT;
euclid_similarity_bytes(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "x86_64")]
group.bench_function("byte-euclid-avx", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
avx_euclid_similarity_bytes(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "x86_64")]
group.bench_function("byte-euclid-sse", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
sse_euclid_similarity_bytes(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "aarch64")]
group.bench_function("byte-euclid-neon", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
neon_euclid_similarity_bytes(&random_vectors_1[i], &random_vectors_2[i])
});
});
group.bench_function("byte-manhattan", |b| {
let mut i = 0;
b.iter(|| {
i = (i + 1) % COUNT;
<ManhattanMetric as Metric<VectorElementTypeByte>>::similarity(
&random_vectors_1[i],
&random_vectors_2[i],
)
});
});
group.bench_function("byte-manhattan-no-simd", |b| {
let mut i = 0;
b.iter(|| {
i = (i + 1) % COUNT;
manhattan_similarity_bytes(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "x86_64")]
group.bench_function("byte-manhattan-avx", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
avx_manhattan_similarity_bytes(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "x86_64")]
group.bench_function("byte-manhattan-sse", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
sse_manhattan_similarity_bytes(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "aarch64")]
group.bench_function("byte-manhattan-neon", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
neon_manhattan_similarity_bytes(&random_vectors_1[i], &random_vectors_2[i])
});
});
}
fn half_metrics_bench(c: &mut Criterion) {
let mut group = c.benchmark_group("half-metrics-bench-group");
let mut rng = StdRng::seed_from_u64(42);
let random_vectors_1: Vec<Vec<f16>> = (0..COUNT)
.map(|_| {
(0..DIM)
.map(|_| f16::from_f32(rng.gen_range(0.0..=1.0)))
.collect()
})
.collect();
let random_vectors_2: Vec<Vec<f16>> = (0..COUNT)
.map(|_| {
(0..DIM)
.map(|_| f16::from_f32(rng.gen_range(0.0..=1.0)))
.collect()
})
.collect();
group.bench_function("half-dot", |b| {
let mut i = 0;
b.iter(|| {
i = (i + 1) % COUNT;
<DotProductMetric as Metric<VectorElementTypeHalf>>::similarity(
&random_vectors_1[i],
&random_vectors_2[i],
)
});
});
group.bench_function("half-dot-no-simd", |b| {
let mut i = 0;
b.iter(|| {
i = (i + 1) % COUNT;
dot_similarity_half(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "x86_64")]
group.bench_function("half-dot-avx", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
avx_dot_similarity_half(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "x86_64")]
group.bench_function("half-dot-sse", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
sse_dot_similarity_half(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "aarch64")]
group.bench_function("half-dot-neon", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
neon_dot_similarity_half(&random_vectors_1[i], &random_vectors_2[i])
});
});
group.bench_function("half-euclid", |b| {
let mut i = 0;
b.iter(|| {
i = (i + 1) % COUNT;
<EuclidMetric as Metric<VectorElementTypeHalf>>::similarity(
&random_vectors_1[i],
&random_vectors_2[i],
)
});
});
group.bench_function("half-euclid-no-simd", |b| {
let mut i = 0;
b.iter(|| {
i = (i + 1) % COUNT;
euclid_similarity_half(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "x86_64")]
group.bench_function("half-euclid-avx", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
avx_euclid_similarity_half(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "x86_64")]
group.bench_function("half-euclid-sse", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
sse_euclid_similarity_half(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "aarch64")]
group.bench_function("half-euclid-neon", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
neon_euclid_similarity_half(&random_vectors_1[i], &random_vectors_2[i])
});
});
group.bench_function("half-manhattan", |b| {
let mut i = 0;
b.iter(|| {
i = (i + 1) % COUNT;
<ManhattanMetric as Metric<VectorElementTypeHalf>>::similarity(
&random_vectors_1[i],
&random_vectors_2[i],
)
});
});
group.bench_function("half-manhattan-no-simd", |b| {
let mut i = 0;
b.iter(|| {
i = (i + 1) % COUNT;
manhattan_similarity_half(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "x86_64")]
group.bench_function("half-manhattan-avx", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
avx_manhattan_similarity_half(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "x86_64")]
group.bench_function("half-manhattan-sse", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
sse_manhattan_similarity_half(&random_vectors_1[i], &random_vectors_2[i])
});
});
#[cfg(target_arch = "aarch64")]
group.bench_function("half-manhattan-neon", |b| {
let mut i = 0;
b.iter(|| unsafe {
i = (i + 1) % COUNT;
neon_manhattan_similarity_half(&random_vectors_1[i], &random_vectors_2[i])
});
});
}
criterion_group! {
name = benches;
config = Criterion::default();
targets = byte_metrics_bench, half_metrics_bench
}
criterion_main!(benches);