colibri.qdrant / lib /segment /tests /integration /multivector_quantization_test.rs
Gouzi Mohaled
Ajout du dossier lib
84d2a97
use std::collections::{BTreeSet, HashMap};
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
use atomic_refcell::AtomicRefCell;
use common::cpu::CpuPermit;
use common::types::ScoredPointOffset;
use itertools::Itertools;
use rand::prelude::StdRng;
use rand::{Rng, SeedableRng};
use rstest::rstest;
use segment::data_types::vectors::{
only_default_multi_vector, MultiDenseVectorInternal, QueryVector, DEFAULT_VECTOR_NAME,
};
use segment::entry::entry_point::SegmentEntry;
use segment::fixtures::payload_fixtures::{random_int_payload, random_multi_vector};
use segment::index::hnsw_index::graph_links::GraphLinksRam;
use segment::index::hnsw_index::hnsw::{HNSWIndex, HnswIndexOpenArgs};
use segment::index::hnsw_index::num_rayon_threads;
use segment::index::{PayloadIndex, VectorIndex};
use segment::json_path::JsonPath;
use segment::segment_constructor::build_segment;
use segment::types::{
BinaryQuantizationConfig, CompressionRatio, Condition, Distance, FieldCondition, Filter,
HnswConfig, Indexes, MultiVectorConfig, Payload, PayloadSchemaType, ProductQuantizationConfig,
QuantizationSearchParams, Range, ScalarQuantizationConfig, SearchParams, SegmentConfig,
SeqNumberType, VectorDataConfig, VectorStorageType,
};
use segment::vector_storage::quantized::quantized_vectors::QuantizedVectors;
use segment::vector_storage::query::{ContextPair, DiscoveryQuery, RecoQuery};
use serde_json::json;
use tempfile::Builder;
const MAX_EXAMPLE_PAIRS: usize = 4;
const MAX_VECTORS_COUNT: usize = 3;
enum QueryVariant {
Nearest,
RecommendBestScore,
Discovery,
}
enum QuantizationVariant {
Scalar,
PQ,
Binary,
}
fn random_vector<R: Rng + ?Sized>(rnd: &mut R, dim: usize) -> MultiDenseVectorInternal {
let count = rnd.gen_range(1..=MAX_VECTORS_COUNT);
let mut vector = random_multi_vector(rnd, dim, count);
// for BQ change range to [-0.5; 0.5]
vector.flattened_vectors.iter_mut().for_each(|x| *x -= 0.5);
vector
}
fn random_discovery_query<R: Rng + ?Sized>(rnd: &mut R, dim: usize) -> QueryVector {
let num_pairs: usize = rnd.gen_range(1..MAX_EXAMPLE_PAIRS);
let target = random_vector(rnd, dim).into();
let pairs = (0..num_pairs)
.map(|_| {
let positive = random_vector(rnd, dim).into();
let negative = random_vector(rnd, dim).into();
ContextPair { positive, negative }
})
.collect_vec();
DiscoveryQuery::new(target, pairs).into()
}
fn random_reco_query<R: Rng + ?Sized>(rnd: &mut R, dim: usize) -> QueryVector {
let num_examples: usize = rnd.gen_range(1..MAX_EXAMPLE_PAIRS);
let positive = (0..num_examples)
.map(|_| random_vector(rnd, dim).into())
.collect_vec();
let negative = (0..num_examples)
.map(|_| random_vector(rnd, dim).into())
.collect_vec();
RecoQuery::new(positive, negative).into()
}
fn random_query<R: Rng + ?Sized>(variant: &QueryVariant, rnd: &mut R, dim: usize) -> QueryVector {
match variant {
QueryVariant::Nearest => random_vector(rnd, dim).into(),
QueryVariant::Discovery => random_discovery_query(rnd, dim),
QueryVariant::RecommendBestScore => random_reco_query(rnd, dim),
}
}
fn sames_count(a: &[Vec<ScoredPointOffset>], b: &[Vec<ScoredPointOffset>]) -> usize {
a[0].iter()
.map(|x| x.idx)
.collect::<BTreeSet<_>>()
.intersection(&b[0].iter().map(|x| x.idx).collect())
.count()
}
#[rstest]
#[case::nearest_binary_dot(
QueryVariant::Nearest,
QuantizationVariant::Binary,
Distance::Dot,
128, // dim
32, // ef
false,
25., // min_acc out of 100
)]
#[case::discovery_binary_dot(
QueryVariant::Discovery,
QuantizationVariant::Binary,
Distance::Dot,
128, // dim
128, // ef
false,
20., // min_acc out of 100
)]
#[case::recommend_binary_dot(
QueryVariant::RecommendBestScore,
QuantizationVariant::Binary,
Distance::Dot,
128, // dim
64, // ef
false,
20., // min_acc out of 100
)]
#[case::nearest_binary_cosine(
QueryVariant::Nearest,
QuantizationVariant::Binary,
Distance::Cosine,
128, // dim
32, // ef
false,
25., // min_acc out of 100
)]
#[case::discovery_binary_cosine(
QueryVariant::Discovery,
QuantizationVariant::Binary,
Distance::Cosine,
128, // dim
128, // ef
false,
15., // min_acc out of 100
)]
#[case::recommend_binary_cosine(
QueryVariant::RecommendBestScore,
QuantizationVariant::Binary,
Distance::Cosine,
128, // dim
64, // ef
false,
15., // min_acc out of 100
)]
#[case::nearest_scalar_dot(
QueryVariant::Nearest,
QuantizationVariant::Scalar,
Distance::Dot,
32, // dim
32, // ef
false,
80., // min_acc out of 100
)]
#[case::nearest_scalar_cosine(
QueryVariant::Nearest,
QuantizationVariant::Scalar,
Distance::Cosine,
32, // dim
32, // ef
false,
80., // min_acc out of 100
)]
#[case::nearest_pq_dot(
QueryVariant::Nearest,
QuantizationVariant::PQ,
Distance::Dot,
16, // dim
32, // ef
false,
70., // min_acc out of 100
)]
#[case::nearest_scalar_cosine_on_disk(
QueryVariant::Nearest,
QuantizationVariant::Scalar,
Distance::Cosine,
32, // dim
32, // ef
true,
80., // min_acc out of 100
)]
fn test_multivector_quantization_hnsw(
#[case] query_variant: QueryVariant,
#[case] quantization_variant: QuantizationVariant,
#[case] distance: Distance,
#[case] dim: usize,
#[case] ef: usize,
#[case] on_disk: bool,
#[case] min_acc: f64, // out of 100
) {
let stopped = AtomicBool::new(false);
let m = 8;
let num_vectors: u64 = 1_000;
let ef_construct = 16;
let full_scan_threshold = 16; // KB
let num_payload_values = 2;
let mut rnd = StdRng::seed_from_u64(42);
let dir = Builder::new().prefix("segment_dir").tempdir().unwrap();
let quantized_data_path = dir.path();
let hnsw_dir = Builder::new().prefix("hnsw_dir").tempdir().unwrap();
let storage_type = if on_disk {
VectorStorageType::ChunkedMmap
} else {
VectorStorageType::Memory
};
let config = SegmentConfig {
vector_data: HashMap::from([(
DEFAULT_VECTOR_NAME.to_owned(),
VectorDataConfig {
size: dim,
distance,
storage_type,
index: Indexes::Plain {},
quantization_config: None,
multivector_config: Some(MultiVectorConfig::default()), // uses multivec config
datatype: None,
},
)]),
sparse_vector_data: Default::default(),
payload_storage_type: Default::default(),
};
let int_key = "int";
let mut segment = build_segment(dir.path(), &config, true).unwrap();
for n in 0..num_vectors {
let idx = n.into();
let vector = random_vector(&mut rnd, dim);
let int_payload = random_int_payload(&mut rnd, num_payload_values..=num_payload_values);
let payload: Payload = json!({int_key:int_payload,}).into();
segment
.upsert_point(n as SeqNumberType, idx, only_default_multi_vector(&vector))
.unwrap();
segment
.set_full_payload(n as SeqNumberType, idx, &payload)
.unwrap();
}
segment
.payload_index
.borrow_mut()
.set_indexed(&JsonPath::new(int_key), PayloadSchemaType::Integer)
.unwrap();
let quantization_config = match quantization_variant {
QuantizationVariant::Scalar => ScalarQuantizationConfig {
r#type: Default::default(),
quantile: None,
always_ram: Some(false),
}
.into(),
QuantizationVariant::PQ => ProductQuantizationConfig {
compression: CompressionRatio::X8,
always_ram: Some(false),
}
.into(),
QuantizationVariant::Binary => BinaryQuantizationConfig {
always_ram: Some(false),
}
.into(),
};
segment.vector_data.values_mut().for_each(|vector_storage| {
{
// test persistence, encode and save quantized vectors
QuantizedVectors::create(
&vector_storage.vector_storage.borrow(),
&quantization_config,
quantized_data_path,
4,
&stopped,
)
.unwrap();
}
// test persistence, load quantized vectors
let quantized_vectors =
QuantizedVectors::load(&vector_storage.vector_storage.borrow(), quantized_data_path)
.unwrap();
vector_storage.quantized_vectors = Arc::new(AtomicRefCell::new(Some(quantized_vectors)));
});
let hnsw_config = HnswConfig {
m,
ef_construct,
full_scan_threshold,
max_indexing_threads: 2,
on_disk: Some(false),
payload_m: None,
};
let permit_cpu_count = num_rayon_threads(hnsw_config.max_indexing_threads);
let permit = Arc::new(CpuPermit::dummy(permit_cpu_count as u32));
let hnsw_index = HNSWIndex::<GraphLinksRam>::open(HnswIndexOpenArgs {
path: hnsw_dir.path(),
id_tracker: segment.id_tracker.clone(),
vector_storage: segment.vector_data[DEFAULT_VECTOR_NAME]
.vector_storage
.clone(),
quantized_vectors: segment.vector_data[DEFAULT_VECTOR_NAME]
.quantized_vectors
.clone(),
payload_index: segment.payload_index.clone(),
hnsw_config,
permit: Some(permit),
stopped: &stopped,
})
.unwrap();
let top = 5;
let mut sames = 0;
let attempts = 100;
for _ in 0..attempts {
let query = random_query(&query_variant, &mut rnd, dim);
let range_size = 40;
let left_range = rnd.gen_range(0..400);
let right_range = left_range + range_size;
let filter = Filter::new_must(Condition::Field(FieldCondition::new_range(
JsonPath::new(int_key),
Range {
lt: None,
gt: None,
gte: Some(f64::from(left_range)),
lte: Some(f64::from(right_range)),
},
)));
let filter_query = Some(&filter);
let index_result = hnsw_index
.search(
&[&query],
filter_query,
top,
Some(&SearchParams {
hnsw_ef: Some(ef),
quantization: Some(QuantizationSearchParams {
oversampling: Some(1.3),
..Default::default()
}),
..Default::default()
}),
&Default::default(),
)
.unwrap();
let plain_result = hnsw_index
.search(
&[&query],
filter_query,
top,
Some(&SearchParams {
hnsw_ef: Some(ef),
quantization: Some(QuantizationSearchParams {
ignore: true,
..Default::default()
}),
exact: true,
..Default::default()
}),
&Default::default(),
)
.unwrap();
sames += sames_count(&plain_result, &index_result);
}
let acc = 100.0 * sames as f64 / (attempts * top) as f64;
println!("sames = {sames}, attempts = {attempts}, top = {top}, acc = {acc}");
assert!(acc > min_acc);
}