colibri.qdrant / tests /consensus_tests /test_snapshot_consistency.py
Gouzi Mohaled
Ajout du dossier tests
3932407
import multiprocessing
import pathlib
import random
from time import sleep
from .fixtures import upsert_random_points, create_collection
from .utils import *
COLLECTION_NAME = "test_collection"
def update_points_in_loop(peer_url, collection_name, offset=0, throttle=False, duration=None):
start = time.time()
limit = 3
while True:
upsert_random_points(peer_url, limit, collection_name, offset=offset)
offset += limit
if throttle:
sleep(random.uniform(0.4, 0.6))
if duration is not None and (time.time() - start) > duration:
break
def run_update_points_in_background(peer_url, collection_name, init_offset=0, throttle=False, duration=None):
p = multiprocessing.Process(target=update_points_in_loop, args=(peer_url, collection_name, init_offset, throttle, duration))
p.start()
return p
def check_data_consistency(data):
assert(len(data) > 1)
for i in range(len(data) - 1):
j = i + 1
data_i = data[i]
data_j = data[j]
if data_i != data_j:
ids_i = set(x.id for x in data_i)
ids_j = set(x.id for x in data_j)
diff = ids_i - ids_j
if len(diff) < 100:
print(f"Diff between {i} and {j}: {diff}")
else:
print(f"Diff len between {i} and {j}: {len(diff)}")
assert False, "Data on all nodes should be consistent"
# Test data consistency across nodes when creating snapshots.
#
# We test this because we proxy all segments while creating a snapshot, after
# which we unproxy all of them again propagating changes. While this is
# happening we keep upserting new data. Because this is error prone we need to
# assert data consistency.
#
# Test that data on the both sides is consistent
def test_shard_wal_delta_transfer_manual_recovery(tmp_path: pathlib.Path):
assert_project_root()
# seed port to reuse the same port for the restarted nodes
peer_api_uris, peer_dirs, bootstrap_uri = start_cluster(tmp_path, 3, 20000)
create_collection(peer_api_uris[0], shard_number=1, replication_factor=3)
wait_collection_exists_and_active_on_all_peers(
collection_name=COLLECTION_NAME,
peer_api_uris=peer_api_uris
)
# Insert points!
upsert_random_points(peer_api_uris[0], 10000, batch_size=100)
# Start pushing points to the cluster
upload_process_1 = run_update_points_in_background(peer_api_uris[0], COLLECTION_NAME, init_offset=0, throttle=True)
upload_process_2 = run_update_points_in_background(peer_api_uris[1], COLLECTION_NAME, init_offset=100000, throttle=True)
upload_process_3 = run_update_points_in_background(peer_api_uris[2], COLLECTION_NAME, init_offset=200000, throttle=True)
sleep(1)
# Make 5 snapshots
for i in range(0, 5):
r = requests.post(f"{peer_api_uris[0]}/collections/{COLLECTION_NAME}/snapshots?wait=true")
assert_http_ok(r)
upload_process_1.kill()
upload_process_2.kill()
upload_process_3.kill()
sleep(1)
# Match all points on all nodes exactly
data = []
for uri in peer_api_uris:
r = requests.post(
f"{uri}/collections/{COLLECTION_NAME}/points/scroll", json={
"limit": 999999999,
"with_vectors": True,
"with_payload": True,
}
)
assert_http_ok(r)
data.append(r.json()["result"])
check_data_consistency(data)