# Quick Start This example covers the most basic use-case - collection creation and basic vector search. For additional information please refer to the [API documentation](https://api.qdrant.tech/). ## Docker 🐳 Use latest pre-built image from [DockerHub](https://hub.docker.com/r/qdrant/qdrant) ```bash docker pull qdrant/qdrant ``` Run it with default configuration: ```bash docker run -p 6333:6333 qdrant/qdrant ``` Build your own from source ```bash docker build . --tag=qdrant/qdrant ``` And once you need a fine-grained setup, you can also define a storage path and custom configuration: ```bash docker run -p 6333:6333 \ -v $(pwd)/path/to/data:/qdrant/storage \ -v $(pwd)/path/to/snapshots:/qdrant/snapshots \ -v $(pwd)/path/to/custom_config.yaml:/qdrant/config/production.yaml \ qdrant/qdrant ``` - `/qdrant/storage` - is the place where Qdrant persists all your data. Make sure to mount it as a volume, otherwise docker will drop it with the container. - `/qdrant/snapshots` - is the place where Qdrant stores [snapshots](https://qdrant.tech/documentation/concepts/snapshots/) - `/qdrant/config/production.yaml` - is the file with engine configuration. You can override any value from the [reference config](https://github.com/qdrant/qdrant/blob/master/config/config.yaml). In a real production environment, you should enable authentication by setting `service.apiKey`. - For production environments, consider also setting [`--read-only`](https://docs.docker.com/reference/cli/docker/container/run/#read-only) and `--user=1000:2000` to further secure your Qdrant instance. Or use [our Helm chart](https://github.com/qdrant/qdrant-helm) or [Qdrant Cloud](https://qdrant.tech/documentation/cloud/) which sets these by default. Now Qdrant should be accessible at [localhost:6333](http://localhost:6333/). ## Create collection First - let's create a collection with dot-production metric. ```bash curl -X PUT 'http://localhost:6333/collections/test_collection' \ -H 'Content-Type: application/json' \ --data-raw '{ "vectors": { "size": 4, "distance": "Dot" } }' ``` Expected response: ```json { "result": true, "status": "ok", "time": 0.031095451 } ``` We can ensure that collection was created: ```bash curl 'http://localhost:6333/collections/test_collection' ``` Expected response: ```json { "result": { "status": "green", "vectors_count": 0, "segments_count": 5, "disk_data_size": 0, "ram_data_size": 0, "config": { "params": { "vectors": { "size": 4, "distance": "Dot" } }, "hnsw_config": { "m": 16, "ef_construct": 100, "full_scan_threshold": 10000 }, "optimizer_config": { "deleted_threshold": 0.2, "vacuum_min_vector_number": 1000, "default_segment_number": 2, "max_segment_size": null, "memmap_threshold": null, "indexing_threshold": 20000, "flush_interval_sec": 5, "max_optimization_threads": null }, "wal_config": { "wal_capacity_mb": 32, "wal_segments_ahead": 0 } } }, "status": "ok", "time": 2.1199e-5 } ``` ## Add points Let's now add vectors with some payload: ```bash curl -L -X PUT 'http://localhost:6333/collections/test_collection/points?wait=true' \ -H 'Content-Type: application/json' \ --data-raw '{ "points": [ {"id": 1, "vector": [0.05, 0.61, 0.76, 0.74], "payload": {"city": "Berlin"}}, {"id": 2, "vector": [0.19, 0.81, 0.75, 0.11], "payload": {"city": ["Berlin", "London"] }}, {"id": 3, "vector": [0.36, 0.55, 0.47, 0.94], "payload": {"city": ["Berlin", "Moscow"] }}, {"id": 4, "vector": [0.18, 0.01, 0.85, 0.80], "payload": {"city": ["London", "Moscow"] }}, {"id": 5, "vector": [0.24, 0.18, 0.22, 0.44], "payload": {"count": [0] }}, {"id": 6, "vector": [0.35, 0.08, 0.11, 0.44]} ] }' ``` Expected response: ```json { "result": { "operation_id": 0, "status": "completed" }, "status": "ok", "time": 0.000206061 } ``` ## Search with filtering Let's start with a basic request: ```bash curl -L -X POST 'http://localhost:6333/collections/test_collection/points/search' \ -H 'Content-Type: application/json' \ --data-raw '{ "vector": [0.2,0.1,0.9,0.7], "top": 3 }' ``` Expected response: ```json { "result": [ { "id": 4, "score": 1.362, "payload": null, "version": 0 }, { "id": 1, "score": 1.273, "payload": null, "version": 0 }, { "id": 3, "score": 1.208, "payload": null, "version": 0 } ], "status": "ok", "time": 0.000055785 } ``` But result is different if we add a filter: ```bash curl -L -X POST 'http://localhost:6333/collections/test_collection/points/search' \ -H 'Content-Type: application/json' \ --data-raw '{ "filter": { "should": [ { "key": "city", "match": { "value": "London" } } ] }, "vector": [0.2, 0.1, 0.9, 0.7], "top": 3 }' ``` Expected response: ```json { "result": [ { "id": 4, "score": 1.362 }, { "id": 2, "score": 0.871 } ], "status": "ok", "time": 0.000093972 } ```