from PIL import Image from pymilvus import connections, Collection from pymilvus import FieldSchema, CollectionSchema, DataType, Collection from utils.fetch_image import fetch_image def load_collection(name): collection = Collection(name) return collection def create_collection(name, description): fields = [ FieldSchema(name="text_embedding", dtype=DataType.FLOAT_VECTOR, dim=512), FieldSchema(name="image_embedding", dtype=DataType.FLOAT_VECTOR, dim=512), FieldSchema(name="avg_embedding", dtype=DataType.FLOAT_VECTOR, dim=512), FieldSchema(name="weighted_avg_embedding", dtype=DataType.FLOAT_VECTOR, dim=512), FieldSchema(name="image_id", dtype=DataType.INT64, is_primary=True), FieldSchema(name="metadata", dtype=DataType.VARCHAR, max_length=5000) ] schema = CollectionSchema(fields, description=description) collection = Collection(name=name, schema=schema) return collection def create_hnsw_index(collection): index_params = { "index_type": "HNSW", "metric_type": "IP", # IP for cosine similarity "params": {"M": 32, "efConstruction": 200} } collection.create_index(field_name="text_embedding", index_params=index_params) collection.create_index(field_name="image_embedding", index_params=index_params) collection.create_index(field_name="avg_embedding", index_params=index_params) collection.create_index(field_name="weighted_avg_embedding", index_params=index_params) def insert_data(collection, catalog, column, text_embeds, image_embeds, avg_embeds, w_avg_embeds): image_ids = catalog['Id'].tolist() metadata = catalog[column].tolist() collection.insert([ text_embeds, image_embeds, avg_embeds, w_avg_embeds, image_ids, metadata ]) def search_in_milvus(collection, search_field, query_embedding, top_k=6): # Step 1: Perform search in Milvus search_params = {"metric_type": "IP", "params": {"ef": 128}} results = collection.search( query_embedding.tolist(), # Query vector search_field, # Field to search in param=search_params, limit=top_k, # Top k results output_fields=["image_id", "metadata", "url"] ) # Step 2: Extract the relevant information from the search results search_results = [] for result in results[0]: # The first element of 'results' contains the search results image_id = result.entity.get("image_id") # Retrieve the image ID metadata = result.entity.get("metadata") # Retrieve metadata (such as description, brand, etc.) url = result.entity.get("url") # Retrieve url to fetch image similarity_score = result.distance # Retrieve similarity score (distance) # Load the image (you can use PIL to load the image) #image_path = "/content/drive/MyDrive/images/" + str(image_id) + ".jpg" #image = Image.open(image_path) image = fetch_image(url) # Append the image, metadata, and score to the search results search_results.append({ "image": image, "metadata": metadata, "similarity_score": similarity_score }) # Step 3: Return the search results return search_results conn = None conn = connections.connect("default", uri='https://in03-6efb78578dde7a3.serverless.gcp-us-west1.cloud.zilliz.com', token='78a82c19d7a02c531dab34d97ffde11caba0aa18b58ad02c46ee98df99d912291043835a002e427d89d5ddbb65b342191c36c1ae' ) fashionclip_collection = load_collection("fashionclip") fashionsiglip_collection = load_collection("fashionsiglip")