|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging
|
|
import os
|
|
import warnings
|
|
|
|
from torch import Tensor
|
|
from torch import nn
|
|
|
|
|
|
logger = logging.getLogger("dinov2")
|
|
|
|
|
|
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
|
|
try:
|
|
if XFORMERS_ENABLED:
|
|
from xformers.ops import memory_efficient_attention, unbind
|
|
|
|
XFORMERS_AVAILABLE = True
|
|
warnings.warn("xFormers is available (Attention)")
|
|
else:
|
|
warnings.warn("xFormers is disabled (Attention)")
|
|
raise ImportError
|
|
except ImportError:
|
|
XFORMERS_AVAILABLE = False
|
|
warnings.warn("xFormers is not available (Attention)")
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_heads: int = 8,
|
|
qkv_bias: bool = False,
|
|
proj_bias: bool = True,
|
|
attn_drop: float = 0.0,
|
|
proj_drop: float = 0.0,
|
|
) -> None:
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = head_dim**-0.5
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
B, N, C = x.shape
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
|
|
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
|
|
attn = q @ k.transpose(-2, -1)
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
|
|
class MemEffAttention(Attention):
|
|
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
|
if not XFORMERS_AVAILABLE:
|
|
if attn_bias is not None:
|
|
raise AssertionError("xFormers is required for using nested tensors")
|
|
return super().forward(x)
|
|
|
|
B, N, C = x.shape
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
|
|
|
q, k, v = unbind(qkv, 2)
|
|
|
|
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
|
x = x.reshape([B, N, C])
|
|
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|