File size: 9,762 Bytes
262b155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from typing import Literal, Union, Optional

import torch
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
from diffusers import (
    UNet2DConditionModel,
    SchedulerMixin,
    StableDiffusionPipeline,
    StableDiffusionXLPipeline,
    AutoencoderKL,
)
from diffusers.schedulers import (
    DDIMScheduler,
    DDPMScheduler,
    LMSDiscreteScheduler,
    EulerAncestralDiscreteScheduler,
)


TOKENIZER_V1_MODEL_NAME = "CompVis/stable-diffusion-v1-4"
TOKENIZER_V2_MODEL_NAME = "stabilityai/stable-diffusion-2-1"

AVAILABLE_SCHEDULERS = Literal["ddim", "ddpm", "lms", "euler_a"]

SDXL_TEXT_ENCODER_TYPE = Union[CLIPTextModel, CLIPTextModelWithProjection]

DIFFUSERS_CACHE_DIR = None  # if you want to change the cache dir, change this
from diffusers.training_utils import EMAModel
import os
import sys

# from utils.modules import get_diffusion_modules
def load_diffusers_model(

    pretrained_model_name_or_path: str,

    v2: bool = False,

    clip_skip: Optional[int] = None,

    weight_dtype: torch.dtype = torch.float32,

) -> tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel,]:
    # VAE はいらない

    if v2:
        tokenizer = CLIPTokenizer.from_pretrained(
            TOKENIZER_V2_MODEL_NAME,
            subfolder="tokenizer",
            torch_dtype=weight_dtype,
            cache_dir=DIFFUSERS_CACHE_DIR,
        )
        text_encoder = CLIPTextModel.from_pretrained(
            pretrained_model_name_or_path,
            subfolder="text_encoder",
            # default is clip skip 2
            num_hidden_layers=24 - (clip_skip - 1) if clip_skip is not None else 23,
            torch_dtype=weight_dtype,
            cache_dir=DIFFUSERS_CACHE_DIR,
        )
    else:
        tokenizer = CLIPTokenizer.from_pretrained(
            TOKENIZER_V1_MODEL_NAME,
            subfolder="tokenizer",
            torch_dtype=weight_dtype,
            cache_dir=DIFFUSERS_CACHE_DIR,
        )
        text_encoder = CLIPTextModel.from_pretrained(
            pretrained_model_name_or_path,
            subfolder="text_encoder",
            num_hidden_layers=12 - (clip_skip - 1) if clip_skip is not None else 12,
            torch_dtype=weight_dtype,
            cache_dir=DIFFUSERS_CACHE_DIR,
        )

    unet = UNet2DConditionModel.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="unet",
        torch_dtype=weight_dtype,
        cache_dir=DIFFUSERS_CACHE_DIR,
    )
    
    vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")

    return tokenizer, text_encoder, unet, vae


def load_checkpoint_model(

    checkpoint_path: str,

    v2: bool = False,

    clip_skip: Optional[int] = None,

    weight_dtype: torch.dtype = torch.float32,

) -> tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel,]:
    pipe = StableDiffusionPipeline.from_ckpt(
        checkpoint_path,
        upcast_attention=True if v2 else False,
        torch_dtype=weight_dtype,
        cache_dir=DIFFUSERS_CACHE_DIR,
    )

    unet = pipe.unet
    tokenizer = pipe.tokenizer
    text_encoder = pipe.text_encoder
    vae = pipe.vae
    if clip_skip is not None:
        if v2:
            text_encoder.config.num_hidden_layers = 24 - (clip_skip - 1)
        else:
            text_encoder.config.num_hidden_layers = 12 - (clip_skip - 1)

    del pipe

    return tokenizer, text_encoder, unet, vae


def load_models(

    pretrained_model_name_or_path: str,

    ckpt_path: str,

    scheduler_name: AVAILABLE_SCHEDULERS,

    v2: bool = False,

    v_pred: bool = False,

    weight_dtype: torch.dtype = torch.float32,

) -> tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel, SchedulerMixin,]:
    if pretrained_model_name_or_path.endswith(
        ".ckpt"
    ) or pretrained_model_name_or_path.endswith(".safetensors"):
        tokenizer, text_encoder, unet, vae = load_checkpoint_model(
            pretrained_model_name_or_path, v2=v2, weight_dtype=weight_dtype
        )
    else:  # diffusers
        tokenizer, text_encoder, unet, vae = load_diffusers_model(
            pretrained_model_name_or_path, v2=v2, weight_dtype=weight_dtype
        )

    # VAE はいらない

    scheduler = create_noise_scheduler(
        scheduler_name,
        prediction_type="v_prediction" if v_pred else "epsilon",
    )
    # trained unet_ema
    if ckpt_path not in [None, "None"]:
        ema_unet = EMAModel.from_pretrained(os.path.join(ckpt_path, "unet_ema"), UNet2DConditionModel)
        ema_unet.copy_to(unet.parameters())
    return tokenizer, text_encoder, unet, scheduler, vae


def load_diffusers_model_xl(

    pretrained_model_name_or_path: str,

    weight_dtype: torch.dtype = torch.float32,

) -> tuple[list[CLIPTokenizer], list[SDXL_TEXT_ENCODER_TYPE], UNet2DConditionModel,]:
    # returns tokenizer, tokenizer_2, text_encoder, text_encoder_2, unet

    tokenizers = [
        CLIPTokenizer.from_pretrained(
            pretrained_model_name_or_path,
            subfolder="tokenizer",
            torch_dtype=weight_dtype,
            cache_dir=DIFFUSERS_CACHE_DIR,
        ),
        CLIPTokenizer.from_pretrained(
            pretrained_model_name_or_path,
            subfolder="tokenizer_2",
            torch_dtype=weight_dtype,
            cache_dir=DIFFUSERS_CACHE_DIR,
            pad_token_id=0,  # same as open clip
        ),
    ]

    text_encoders = [
        CLIPTextModel.from_pretrained(
            pretrained_model_name_or_path,
            subfolder="text_encoder",
            torch_dtype=weight_dtype,
            cache_dir=DIFFUSERS_CACHE_DIR,
        ),
        CLIPTextModelWithProjection.from_pretrained(
            pretrained_model_name_or_path,
            subfolder="text_encoder_2",
            torch_dtype=weight_dtype,
            cache_dir=DIFFUSERS_CACHE_DIR,
        ),
    ]

    unet = UNet2DConditionModel.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="unet",
        torch_dtype=weight_dtype,
        cache_dir=DIFFUSERS_CACHE_DIR,
    )
    vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
    return tokenizers, text_encoders, unet, vae


def load_checkpoint_model_xl(

    checkpoint_path: str,

    weight_dtype: torch.dtype = torch.float32,

) -> tuple[list[CLIPTokenizer], list[SDXL_TEXT_ENCODER_TYPE], UNet2DConditionModel,]:
    pipe = StableDiffusionXLPipeline.from_single_file(
        checkpoint_path,
        torch_dtype=weight_dtype,
        cache_dir=DIFFUSERS_CACHE_DIR,
    )

    unet = pipe.unet
    tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
    text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
    if len(text_encoders) == 2:
        text_encoders[1].pad_token_id = 0
    vae = pipe.vae
    del pipe

    return tokenizers, text_encoders, unet, vae


def load_models_xl(

    pretrained_model_name_or_path: str,

    scheduler_name: AVAILABLE_SCHEDULERS,

    weight_dtype: torch.dtype = torch.float32,

) -> tuple[
    list[CLIPTokenizer],
    list[SDXL_TEXT_ENCODER_TYPE],
    UNet2DConditionModel,
    SchedulerMixin,
]:
    if pretrained_model_name_or_path.endswith(
        ".ckpt"
    ) or pretrained_model_name_or_path.endswith(".safetensors"):
        (
            tokenizers,
            text_encoders,
            unet,
            vae
        ) = load_checkpoint_model_xl(pretrained_model_name_or_path, weight_dtype)
    else:  # diffusers
        (
            tokenizers,
            text_encoders,
            unet,
            vae
        ) = load_diffusers_model_xl(pretrained_model_name_or_path, weight_dtype)

    scheduler = create_noise_scheduler(scheduler_name)

    return tokenizers, text_encoders, unet, scheduler, vae


def create_noise_scheduler(

    scheduler_name: AVAILABLE_SCHEDULERS = "ddpm",

    prediction_type: Literal["epsilon", "v_prediction"] = "epsilon",

) -> SchedulerMixin:


    name = scheduler_name.lower().replace(" ", "_")
    if name == "ddim":
        # https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/ddim
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            num_train_timesteps=1000,
            clip_sample=False,
            prediction_type=prediction_type,  # これでいいの?
        )
    elif name == "ddpm":
        # https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/ddpm
        scheduler = DDPMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            num_train_timesteps=1000,
            clip_sample=False,
            prediction_type=prediction_type,
        )
    elif name == "lms":
        # https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/lms_discrete
        scheduler = LMSDiscreteScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            num_train_timesteps=1000,
            prediction_type=prediction_type,
        )
    elif name == "euler_a":
        # https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/euler_ancestral
        scheduler = EulerAncestralDiscreteScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            num_train_timesteps=1000,
            prediction_type=prediction_type,
        )
    else:
        raise ValueError(f"Unknown scheduler name: {name}")

    return scheduler