Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,762 Bytes
262b155 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
from typing import Literal, Union, Optional
import torch
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
from diffusers import (
UNet2DConditionModel,
SchedulerMixin,
StableDiffusionPipeline,
StableDiffusionXLPipeline,
AutoencoderKL,
)
from diffusers.schedulers import (
DDIMScheduler,
DDPMScheduler,
LMSDiscreteScheduler,
EulerAncestralDiscreteScheduler,
)
TOKENIZER_V1_MODEL_NAME = "CompVis/stable-diffusion-v1-4"
TOKENIZER_V2_MODEL_NAME = "stabilityai/stable-diffusion-2-1"
AVAILABLE_SCHEDULERS = Literal["ddim", "ddpm", "lms", "euler_a"]
SDXL_TEXT_ENCODER_TYPE = Union[CLIPTextModel, CLIPTextModelWithProjection]
DIFFUSERS_CACHE_DIR = None # if you want to change the cache dir, change this
from diffusers.training_utils import EMAModel
import os
import sys
# from utils.modules import get_diffusion_modules
def load_diffusers_model(
pretrained_model_name_or_path: str,
v2: bool = False,
clip_skip: Optional[int] = None,
weight_dtype: torch.dtype = torch.float32,
) -> tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel,]:
# VAE はいらない
if v2:
tokenizer = CLIPTokenizer.from_pretrained(
TOKENIZER_V2_MODEL_NAME,
subfolder="tokenizer",
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
)
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
# default is clip skip 2
num_hidden_layers=24 - (clip_skip - 1) if clip_skip is not None else 23,
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
)
else:
tokenizer = CLIPTokenizer.from_pretrained(
TOKENIZER_V1_MODEL_NAME,
subfolder="tokenizer",
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
)
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
num_hidden_layers=12 - (clip_skip - 1) if clip_skip is not None else 12,
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
)
unet = UNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="unet",
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
)
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
return tokenizer, text_encoder, unet, vae
def load_checkpoint_model(
checkpoint_path: str,
v2: bool = False,
clip_skip: Optional[int] = None,
weight_dtype: torch.dtype = torch.float32,
) -> tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel,]:
pipe = StableDiffusionPipeline.from_ckpt(
checkpoint_path,
upcast_attention=True if v2 else False,
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
)
unet = pipe.unet
tokenizer = pipe.tokenizer
text_encoder = pipe.text_encoder
vae = pipe.vae
if clip_skip is not None:
if v2:
text_encoder.config.num_hidden_layers = 24 - (clip_skip - 1)
else:
text_encoder.config.num_hidden_layers = 12 - (clip_skip - 1)
del pipe
return tokenizer, text_encoder, unet, vae
def load_models(
pretrained_model_name_or_path: str,
ckpt_path: str,
scheduler_name: AVAILABLE_SCHEDULERS,
v2: bool = False,
v_pred: bool = False,
weight_dtype: torch.dtype = torch.float32,
) -> tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel, SchedulerMixin,]:
if pretrained_model_name_or_path.endswith(
".ckpt"
) or pretrained_model_name_or_path.endswith(".safetensors"):
tokenizer, text_encoder, unet, vae = load_checkpoint_model(
pretrained_model_name_or_path, v2=v2, weight_dtype=weight_dtype
)
else: # diffusers
tokenizer, text_encoder, unet, vae = load_diffusers_model(
pretrained_model_name_or_path, v2=v2, weight_dtype=weight_dtype
)
# VAE はいらない
scheduler = create_noise_scheduler(
scheduler_name,
prediction_type="v_prediction" if v_pred else "epsilon",
)
# trained unet_ema
if ckpt_path not in [None, "None"]:
ema_unet = EMAModel.from_pretrained(os.path.join(ckpt_path, "unet_ema"), UNet2DConditionModel)
ema_unet.copy_to(unet.parameters())
return tokenizer, text_encoder, unet, scheduler, vae
def load_diffusers_model_xl(
pretrained_model_name_or_path: str,
weight_dtype: torch.dtype = torch.float32,
) -> tuple[list[CLIPTokenizer], list[SDXL_TEXT_ENCODER_TYPE], UNet2DConditionModel,]:
# returns tokenizer, tokenizer_2, text_encoder, text_encoder_2, unet
tokenizers = [
CLIPTokenizer.from_pretrained(
pretrained_model_name_or_path,
subfolder="tokenizer",
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
),
CLIPTokenizer.from_pretrained(
pretrained_model_name_or_path,
subfolder="tokenizer_2",
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
pad_token_id=0, # same as open clip
),
]
text_encoders = [
CLIPTextModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
),
CLIPTextModelWithProjection.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder_2",
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
),
]
unet = UNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="unet",
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
)
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
return tokenizers, text_encoders, unet, vae
def load_checkpoint_model_xl(
checkpoint_path: str,
weight_dtype: torch.dtype = torch.float32,
) -> tuple[list[CLIPTokenizer], list[SDXL_TEXT_ENCODER_TYPE], UNet2DConditionModel,]:
pipe = StableDiffusionXLPipeline.from_single_file(
checkpoint_path,
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
)
unet = pipe.unet
tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
if len(text_encoders) == 2:
text_encoders[1].pad_token_id = 0
vae = pipe.vae
del pipe
return tokenizers, text_encoders, unet, vae
def load_models_xl(
pretrained_model_name_or_path: str,
scheduler_name: AVAILABLE_SCHEDULERS,
weight_dtype: torch.dtype = torch.float32,
) -> tuple[
list[CLIPTokenizer],
list[SDXL_TEXT_ENCODER_TYPE],
UNet2DConditionModel,
SchedulerMixin,
]:
if pretrained_model_name_or_path.endswith(
".ckpt"
) or pretrained_model_name_or_path.endswith(".safetensors"):
(
tokenizers,
text_encoders,
unet,
vae
) = load_checkpoint_model_xl(pretrained_model_name_or_path, weight_dtype)
else: # diffusers
(
tokenizers,
text_encoders,
unet,
vae
) = load_diffusers_model_xl(pretrained_model_name_or_path, weight_dtype)
scheduler = create_noise_scheduler(scheduler_name)
return tokenizers, text_encoders, unet, scheduler, vae
def create_noise_scheduler(
scheduler_name: AVAILABLE_SCHEDULERS = "ddpm",
prediction_type: Literal["epsilon", "v_prediction"] = "epsilon",
) -> SchedulerMixin:
name = scheduler_name.lower().replace(" ", "_")
if name == "ddim":
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/ddim
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
clip_sample=False,
prediction_type=prediction_type, # これでいいの?
)
elif name == "ddpm":
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/ddpm
scheduler = DDPMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
clip_sample=False,
prediction_type=prediction_type,
)
elif name == "lms":
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/lms_discrete
scheduler = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
prediction_type=prediction_type,
)
elif name == "euler_a":
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/euler_ancestral
scheduler = EulerAncestralDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
prediction_type=prediction_type,
)
else:
raise ValueError(f"Unknown scheduler name: {name}")
return scheduler
|